PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The combined effect of fractional filter and Smith Predictor for enhanced closed-loop performanceof integer order time-delay systems: some investigations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a generalized fractional controller for integer order systems with time delay. The fractional controller structure is so adopted to have a combined effect of fractional filter and Smith predictor. Interestingly, the resulting novel controller can be decomposed into fractional filter cascaded with an integer order PID controller. The method is applied to two practical examples i.e. liquid level system and Shell control fractionator system. The closed-loop responses resulting from the proposed method are compared with that of the available methods in the literature. For quantitative evaluations of the proposed method, Integral Absolute Error (IAE) and Integral Square Control Input (ISCI) performance criteria are employed. The proposed method effectively enhances the closed-loop response by improving the IAE values, reducing the control effort inputs to achieve the desired output. The disturbance rejection and robustness tests are also carried out. The robustness test reveals a significant improvement in the maximum absolute sensitivity measure. That is displayed in numerical simulations of the paper.
Rocznik
Strony
47--76
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr., wzory
Twórcy
  • Department of Electrical Engineering, Sardar Vallabhbhai National Instituteof Technology, Surat 395007, Gujarat, India
  • Department of Electrical Engineering, Sardar Vallabhbhai National Instituteof Technology, Surat 395007, Gujarat, India
Bibliografia
  • [1] G. Alevisakis and D. E. Seborg: An extension of the smith predictor method to multivariable linear systems containing time delays, International Journal of Control, 17(3) (1973), 541–551, doi: 10.1080/00207177308932401.
  • [2] K. Amoura, R. Mansouri, M. Bettayeb, and U. M. Al-Saggaf: Closed-loop step response for tuning PID-fractional-order-filter controllers, ISA Transactions, 64 (2016), 247–257.
  • [3] K. J. Aström and T. Hägglund: PID controllers: Theory, design, and tuning, Research Triangle Park, NC: Instrument Society of America, 1995.
  • [4] K. J. Aström and R. M. Murray: Feedback Systems: An Introduction for Scientists and Engineers, New Jersey, Princeton University Press, 2008.
  • [5] R. S. Barbosa, J. A.T. Machado, and I. M. Ferreira: Tuning of PID Controllers Based on Bode’s Ideal Transfer Function, Nonlinear Dynamics, 38 (2004), 305–321, doi: 10.1007/s11071-004-3763-7.
  • [6] M. Bettayeb and R. Mansouri: IMC-PID-fractional-order-filter controllers design for integer order systems, ISA Transactions, 53(5) (2014), 1620–1628.
  • [7] K. Bingi, R. Ibhrahim, M. N. Karsiti, S.M. Hassan, and V. R. Harindran: A comparative study of 2DOF PID and 2DOF fractional order PID controllers on a class of unstable systems, Archives of Control Sciences, 28(4) (2018), 635–682.
  • [8] H. W. Bode: Network Analysis and Feedback Amplifier Design, New York, Van Nostrand, 1945.
  • [9] E. H. Bristol: On a new measure of interaction for multivariable proces control, IEEE Transactions on Automatic Control, 11(1) (1966), 133–134, doi: 10.1109/TAC.1966.1098266.
  • [10] J. W. Chang and C. C. Yu: The relative gain for non-square multivariable systems, Chemical Engineering Science, 45(5) (1990), 1309–1323, doi: 10.1016/0009-2509(90)87123-A.
  • [11] J. Chen, Z. F. He and X. Qi: A new control method for MIMO first order time delay non- square systems, Journal of Process Control, 21(4) (2011), 538–546, doi: 10.1016/j.jprocont.2011.01.007.
  • [12] C. E. Garcia and M. Morari: Internal model control. A unifying review and some new results, Industrial & Engineering Chemistry Process Design and Development, 21 (1982), 308–321.
  • [13] G. C. Goodwin, S. F. Graebe, and M. E. Salgado: Control Systems Design, Prentice Hall, 2001.
  • [14] F. A. Graybill, C. D. Meyer, and R. J. Painter: Note on the generalized inverse of the product of matrices, SIAM Reviews, 8(4) (1966), 522–524.
  • [15] C-C. Hantschk: Pressure pulsations in industrial combustion systems due to self-excitation, in Proc. 4th International conference on Structural Dynamics, EURODYN (2002), 387–391.
  • [16] M. J. He, W. J. Cai, W. Ni, and L. H. Xie: RNGA based control system configuration for multivariable processes, textitJournal of Process Control, 19(6) (2009), 1036–1042, doi: 10.1016/j.jprocont.2009.01.004.
  • [17] T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS, Berlin, Springer-Verlag, 2011.
  • [18] MathWorks: Curve Fitting Toolbox For Use with MATLAB, Version 1.1.2, The MathWorks, Inc., 2004.
  • [19] M. Minorsky: Self-excited oscillations in dynamical systems possessing retarded actions, Journal of Applied Mechanics, 9 (1942), 465.
  • [20] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu: Fractional order Systems and Controls: Fundamentals and Applications, London, Springer-Verlag, 2010.
  • [21] C. A. Monje, B. M. Vinagre, V. Feliu, and Y. Q. Chen: Tuning and autotuning of fractional order controllers for industry applications, Control Engineering Practice, 16(7) (2008), 798–812.
  • [22] C. F. Moore, C. L. Smith, and P.W. Murrill: Improved algorithm for direct digital control, Instuments and Control Systems, 43 (1970), 70.
  • [23] M. Morari and E. Zafiriou: Robust Process Control, Englewood Cliffs, Prentice Hall, 1991.
  • [24] B. A. Ogunnaike andW.H. Ray: Process Dynamics, Modeling and Control, Oxford University Press, New York, 1994.
  • [25] K. Oprzedkiewicz: Approximation method for a fractional order transfer function with zero and pole, Archives of Control Sciences, 24(4) (2014), 447–463.
  • [26] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot: Frequency-band complex noninteger differentiator: Characterization and synthesis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(1) (2000), 25–39, doi: 10.1109/81.817385.
  • [27] N. S. Özbek, M. Önkol, and M. Ö. Efe: Feedback control strategies for quadrotor-type aerial robots: A survey, Transactions of Institute of Measurement and Control, 38(5) (2015), 529–554, doi: 10.1177/0142331215608427.
  • [28] I. Podlubny: Fractional-order systems and PI _D_ controllers, IEEE Transactions on Automatic Control, 44(1) (1999), 208–214, doi: 10.1109/9.739144.
  • [29] D. M. Prett and M. Morari: The Shell process control workshop, London, Butterworths, 1987.
  • [30] A. S. Rao and M. Chidambaram: Smith delay compensator for multivariable non-square systems with multiple time delays, Computers & Chemical Engineering, 30(8) (2006), 1243–1255, doi: 10.1016/j.compchemeng.2006.02.017.
  • [31] D. E. Rivera, M. Morari, and S. Skogestad: Internal model control. 4. PID controller design, Industrial & Engineering Chemistry Process Design and Development, 25 (1986), 252–265.
  • [32] D. E. Reeves and Y. Arkun: Interaction measures for nonsquare decentralized control structures, AIChE Journal., 35(45) (1989), 603–613, doi: 10.1002/aic.690350410.
  • [33] D. E. Seborg, T. F. Edgar, and D. A. Mellichamp: Process Dynamics and Control, John Wiley and sons, New York, 2004.
  • [34] O. J. M. Smith: Closer control of loops with dead time, Chemical Engineering Progress, 53 (1957), 217–219.
  • [35] G. Stephanopoulos: Chemical Process Control, Englewood Cliffs, New Jersey, Prentice Hall, 1984.
  • [36] C. Vlachos, D. Williams, and J. B. Gomm: Solution to the shell standard control problem using genetically tuned PID controllers, Control Engineering Practice, 10(2) (2002), 151–163, doi: 10.1016/S0967-0661(01)00115-0.
  • [37] Q. G. Wang, B. Huang, and X. Guo: Auto-tuning of TITO decoupling controllers from step tests, ISA Transactions, 39 (2000), 407–418, doi: 10.1016/S0019-0578(00)00028-8.
  • [38] Q. G.Wang, B. Zou, T. H. Lee, and Q. Bi: Auto-tuning of multivariable PID controllers from decentralized relay feedback, Automatica, 33(3) (1997), 319–330, doi: 10.1016/S0005-1098(96)00177-X.
  • [39] S. K. P. Wong and D. E. Seborg: A theoretical analysis of Smith and analytical predictors, AIChE Journal, 32(10) (1986), 1597–1605, doi: 10.1002/aic.690321003.
  • [40] E. Yumuk, M. Güzelkaya, and I. Eksin (in press): Analytical fractional PID controller design based on Bode’s ideal transfer function plus time delay, ISA Transactions (2019), doi: 10.1016@j.isatra.2019.01.034.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc63cf4f-ac52-4a07-b959-357c51f954ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.