PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of the Aging Process on the Change of Selected Strength Properties of Polypropylene Compositions with Mineral Fillers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal is to understand the influence of minerals fillers on the course and performance of process of injection molding polypropylene compounds as well as on the mechanical properties of the obtained products. Three types of mineral fillers, derived from post-production waste, were used for testing. It was aluminosilicate (zeolite), fly ash and gypsum powder, all in powder form. The minerals fillers were introduced into the tested PP in a mechanical mixing process prior to the processing. During the injection molding process, inorganic fillers are subject to the same steps as plastic processing, compression, homogenization, transport. Organic fillers used in the injection process were introduced into the processed PP in the amount of 30% by weight. The test stand consists of a screw injection molding machine, Arburg AllRounder 320C. The research on the structure of manufactured materials, mechanical strength, impact resistance and hardness are presented. The laboratory tests of accelerated aging were conducted using an aging chamber. The aging temperature in the heat chamber was set to even amount of 63 oC and irradiance 0,51 W/m2. According to the standard, the aging time has been applied accordingly: 120, 240, 360 h, which conform to degradation at room temperature for 4 month, 8 month and one year. It was found that the type of mineral fillers used did not have a significant influence on the hardness of the surface of the moldings. The changes in hardness shown in the figures are primarily influenced by the properties and type of polymers used during the injection process. During the tests, differences in the mechanical strength of composites for injection molded parts made of PP with mineral fillers were observed. Filling PP with zeolite in the tested value causes a decrease in mechanical strength by an average of 10% from 24 to 21.6 MPa. Different mechanical interactions are shown by flying ash and gypsum powder fillers, increasing mechanical resistance of the composition. Flying ash increases mechanical strength by 30% on average, from 24 to 31.2 MPa. In case of gypsum powder application the resistance of PP composition increases analogically, but on average 20 %, to 29,5 MPa.
Twórcy
  • Doctoral School at the Lublin University of Technology, 38B Nadbystrzycka Str.; 20-618 Lublin, Poland
  • Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, 38D Nadbystrzycka Str.; 20-618 Lublin, Poland
  • Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, 38D Nadbystrzycka Str.; 20-618 Lublin, Poland
Bibliografia
  • 1. Baczkowska A., Kapuściński J., Lindemann Z., Witemberg-Perzyk D., Wojciechowski S. Kompozyty, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2003.
  • 2. Bieliński M., Sykutera D., Czyżewski P. Odporność na starzenie wybranych tworzyw polimerowych i pigmentów. Tworzywa Sztuczne, 5, 2017, 26-29.
  • 3. Bociąga E., Palutkiewicz P. The influence of injection moulding parameters and blowing agent addition on selected properties, surface state and structure of HDPE parts. Polymer Engineering and Science, 4 (53), 2013, 679-704.
  • 4. Bojanowicz-Bablok A. Challenges in phosphoric acid production. Possibilities and limitations of waste manegement. Przemysł Chemiczny, 4, (94), 2013, 450-457.
  • 5. Brzozowska-Stanuch A., Rabiej S., Stanuch, W.: The influence of accelerated weathering conditions – UV radiation and temperature on polyamides and polypropylene. Technical Transactions, 3 (106), 2009, 43-49.
  • 6. Celina M., Gillen K.T., Assink R.A.: Accelerated aging and lifetime prediction: review of non-Arrhenius behavior due to two competing processes. Polymer Degradation and Stability, 90 (3), 2005, 395-404.
  • 7. Chandramohan. D. Tensile and Hardness Tests on Natural Fiber Reinforced Polymer Composite Material, International Journal of Advanced Engineering Sciences and Technologies, 6, 2011, 97-104.
  • 8. Garbacz T., Dulebova L., Krasinsky V. Effectiveness of cellular injection molding process. Advances in Science and Technology, 8, (18), 2013, 74-80.
  • 9. Garbacz T., Jachowicz T., Gajdos I., Kijewski G.: Research on the influence of blowing agent on selected properties of extruded cellular products. Advances in Science and Technology, 9(28), 2015, 81-88.
  • 10. Ghosh S., Khastgir D., Bhowmick A. Thermal degradation and aging of segmented polyamides. Polymer Degradation and Stability, 3 (67), 2000, 427-436.
  • 11. Głogowska K., Sikora J., Duleba B. Effect of mechanical properties of metal powder-filled hybrid moulded products. Journal of Polymer Engineering, 7 (36), 2016, 705-712.
  • 12. Guo M.C., Heuzey M.C., Carreau P.J. Cell structure and dynamic properties of injection molded polypropylene foams. Polymer Engineering and Science, 47, 2007, 1070-1081.
  • 13. Hu Y., Lang, A. W., Li X., Nutt S.R. Hygrothermal aging effects on fatigue of glass/polydicyclopentadiene composites. Polymer Degradation and Stability, 110, 2014, 464-472.
  • 14. Ito M., Nagai, K. Degradation issues of polymer materials used in railway field. Polymer Degradation and Stability, 10 (93), 2008, 1723-1735.
  • 15. Ito M., Inayoshi, S., Moriyama, K. A simple method for evaluation of heat resistant property of elastomers. Polymer Degradation and Stability, 10 (93), 2008, 1935-1938.
  • 16. Janik J. Właściwości i struktura kompozytów polipropylen/krzemian warstwowy. Kompozyty, 4 (10), 2004, 205-211.
  • 17. Jurkowski B, Jurkowska B., Sporządzanie kompozycji polimerowych, Wydawnictwo Naukowo--Techniczne, Warszawa 1995.
  • 18. Klepka T., Jeziórska R., Szadkowska A. Cienkościenne wyroby z modyfikowanego polietylenu dużej gęstości. Przemysł Chemiczny, 8(94), 2015, 1352-1355.
  • 19. Klepka T., Borowski G., Pawłowska M., Lavagnolo M., Oniszczuk T., Wójtowicz A. Effect of flax fibers addition on the mechanical properties and biodegradability of biocomposites based on thermoplastic starch. Archives of Environmenal Protection – 2020, vol 46, nr 2, s74-82
  • 20. Korol J., Lenża J., Burchart-Korol D., Bajer K. Extrusion and testing the charges of recyclete PELD properties. Przemysł Chemiczny, 11(91), 2012, 2196-2201.
  • 21. Kowalska E., Wielgosz Z., Zubrowska M., Pasynkiewicz S., Choroś M. Application of waste phosphogypsun in thermoplastic and chemosetting composites. Polimery, 11-12 (49), 2004, 828-836.
  • 22. Łukowski P., Jaworska B., Sokołowska J., Kępniak M. Wpływ dodatku mineralnego na właściwości kompozytów polimerowo-cementowych. Beton i konstrukcje z betonu – badania. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2015, 19-27.
  • 23. Łukowski P., Sokołowska J., Kępniak M. Wstępna ocena możliwości zastosowania odpadowego pyłu perlitowego w budowlanych kompozytach polimerowych. Budownictwo i Architektura, Wydawnictwo Politechniki Lubelskiej, 2, (13), 2014, 119-126.
  • 24. Palutkiewicz P., Postawa P. The investigation of selected properties of the porous moulded parts from talc-filled PP composites. Journal of Cellular Plastics, 4 (52), 2016, 399-418.
  • 25. Peters S.T. Handbook of Composities, Second edition, Mountain View, California., 1998.
  • 26. Pospisil J., Horak Z., Krulis Z., Nespurek S., Kuroda S. Degradation and aging of polymer blends I. Thermomechanical and thermal degradation. Polymer Degradation and Stability, 65 (3), 1999, 405-414.
  • 27. Rizvi S.J.A., Bhatnagar N. Microcellular PP vs. microcellular PP/MMT nanocomposites: A comparative study of their mechanical behavior. International Polymer Processing, 26, 2011, 375-382.
  • 28. Szostak M., Antczak N., Barczewski M., Andrzejewski J., Klepka T. Kompozyty polimerowe z zeolitami. Przetwórstwo Tworzyw, 5, 2014, 451-457.
  • 29. Tejeda E.H., Sahagún C.Z., González-Núñez R., Rodriguez D. Morphology and mechanical properties of foamed polyethylene–polypropylene blends. Journal of Cellular Plastics, 41, 2005, 417– 435.
  • 30. Tor-Swiatek A. Characteristics of physical structure of poly(vinyl chloride) extrudate modified with microspheres. Polimery, 7-8 (57), 2012, 577-580.
  • 31. Woszuk A., Franus W. Wpływ dodatku zeolitu NaP1 i klinoptilolitu na lepkość asfaltu. Logistyka, 4, 2015, 6819-6827.
  • 32. Xanthos M. Functional fillers for plastics. WileyVCH Verlag GmbH & Co. KGaA, Weinhaim, 2010.
  • 33. PN-EN ISO 527-1 (2010): Plastics. Determination of tensile properties.
  • 34. PN-EN ISO 179 (2001): Plastics. Determination of Charpy impact properties.
  • 35. PN-EN ISO 868 (2003): Plastics and ebonite. Determination of indentation hardness by means of a durometer (Shore hardness).
  • 36. PN-EN ISO 4892-1 (2013):Plastics. Methods of exposure to laboratory light sources.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc621b04-d575-441e-8e75-b2ba580170d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.