PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and anticancer evaluation of some coumarin and azacoumarin derivatives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coumarin and its nitrogen analogue 1-aza coumarin are a class of lactones and lactams, respectively, which are indispensable heterocyclic units to both chemists and biochemists. 1-Aza coumarin derivatives, which ultimately metabolize as the corresponding 8-hydroxy coumarins in the biological system are therefore found to be very good anti-inflammatory, anti-cancer, and analgesic agents. A series of hybrid substituted coumarin and azacoumarin-3-carboxylic acid derivatives (8-methoxycoumarin-3-carboxylic acid (4a), 8-methoxyazacoumarin-3-carboxylic acid (4b), 5-bromo-8-methoxycoumarin-3-carboxylic acid (5a), 5-bromo-8-methoxyazacoumarin-3-carboxylic acid (5b), 2-acetoxy-5-bromo-8-methoxyquinoline-3-carboxylic acid (6), and 5,7-di(phenylazo)-8-methoxycoumarin-3-carboxylic acid (7) were synthesized and structurally proved using spectral and elemental analysis data. Substituted coumarin-3-carboxylic acid (4a and 5a) and Substituted azacoumarin-3-carboxylic acid (4b, 5b and 6) were tested for their in vitro cytotoxic activity against MCF-7 and HepG-2 cell lines.
Słowa kluczowe
Rocznik
Strony
27--34
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wz.
Twórcy
  • Faculty of Education, Shaqra University, Al Muzahimiyah, Shaqra, Riyadh Province, P.O. Box 205, Zip Code 11972, Kingdom Saudi Arabia
Bibliografia
  • 1. Feuer, G. (1974). The Metabolism and Biological Actions of Coumarins, in Progress in medicinal chemistry, Elsevier, 85–158. DOI: 10.1016/S0079-6468(08)70267- 4
  • 2. Evans, W.C. (2009). Trease and evans’ pharmacognosy E-book, Elsevier Health Sciences.
  • 3. Hatano, T., Yasuhara, T., Fukuda, T., Noro, T. & Okuda, T. (1989). Phenolic Constituents of Licorice. II.: Structures of Licopyranocoumarin, Licoarylcoumarin and Glisoflavone, and Inhibitory Effects of Licorice Phenolics on Xanthine Oxidase. Chem. Pharm. Bull. 37, 3005–3009. DOI: 10.1248/cpb.37.30 05.
  • 4. Rosselli, S., Maggio, A.M., Faraone, N., Spadaro, V., Morris-Natschke, S.L., Bastow, K.F., Lee K.-H. & Bruno, M. (2009). The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Natural product communications 4(12), 1701–1706. DOI: 10.1177/1934578X090040121 9.
  • 5. Teng, C.-M., Lin, C.-H., Ko, F.-N., Wu, T.-S. & Huang, T.-F. (1994). The relaxant action of osthole isolated from Angelica pubescens in guinea-pig trachea. Naunyn-Schmiedeberg’s Archives of Pharmacology 349, 202–208. DOI: 10.1007/BF0016983 8.
  • 6. Whang, W.K., Park, H.S., Ham, I., Oh, M., Namkoong, H., Kim, H.K., Hwang, D.W., Hur, S.Y., Kim, T.E., Park, Y.G., Kim, J.-R. & Kim, J. W. (2005). Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Experim. Molec. Med. 37, 436–446. DOI: 10.1038/emm.2005.5 4.
  • 7. Patil, A.D., Freyer, A.J., Eggleston, D.S., Haltiwanger, R.C., Bean, M.F., Taylor, P.B., Caranfa, M.J., Breen, A.L. & Bartus, H.R. (1993). The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem., 36, 4131–4138. DOI: 10.1021/jm00078a00 1.
  • 8. Spino, C., Dodier, M. & Sotheeswaran, S. (1998). Anti-HIV coumarins from calophyllum seed oil. Bioorg. Med. Chem. Letters 8, 3475–3478. DOI: 10.1016/S0960-894X(98)00628- 3
  • 9. Poole, S.K. & Poole, C.F. (1994). Thin-layer chromatographic method for the determination of the principal polar aromatic fl avour compounds of the cinnamons of commerce. Analyst 119, 113–120. DOI: 10.1039/AN99419001 13
  • 10. Crichton, E.G. & Waterman, P.G. Dihydromammea C/OB: A new coumarin from the seed of Mammea africana. (1978). Phytochemistry 17, 1783–1786. DOI: 10.1016/S0031-9422(00)88695 -1
  • 11. Shin, E., Choi, K.-M., Yoo, H.-S., Lee, C.-K., Hwang, B.Y. & Lee M.K. (2010). Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biologi. and Pharmac. Bulle. 33, 1610–614. DOI: 10.1248/bpb.33.16 10
  • 12. Baek, N.I., Ahn, E.M., Kim, H.Y. & Park, Y.D. (2000). Furanocoumarins from the root of Angelica dahurica. Arch. Pharmac. Res. 23, 467–470. DOI: 10.1007/BF029765 74
  • 13. Piller, N.B. (1975). A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. British J. Experim. Patholog, 56, 554–56 0.
  • 14. Emami, S. & Dadashpour, S. (2015). Current developments of coumarin-based anti-cancer agents in medicinal chemistry, Eur. J. Med. Chem. 102, 611–30. DOI: 10.1016/j.ejmech.2015.08.0 33
  • 15. Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M. & Yoshizawa, Y. (2001). The antiproliferative effect of coumarins on several cancer cell lines. Anticancer Res., 21, 917–92 3.
  • 16. Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S.L. & Lee, K.-H. (2003). Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med. Res. Rev., 23, 322–345. DOI: 10.1002/med.100 34
  • 17. Al-Ghareeb, M.S., Heba, A.E. & Abd-Allah, R.M. (2018). In Vitro Antitumor Evaluation of Some New Tetra Substituted 1,2,4-Triazines, Latin Amer. J. Pharmacy, 37, 1035–104 5. http/www.who.int/newa-room/fact-sheet/detailed/cancer (retrived on 30 Nov 2018 ).
  • 19. Dong, P., Rakesh, K.P., Manukumar, H.M., Mohammed, Y.H.E., Karthik, C.S., Sumathi, S., Mallu, P. & Qin, H.-L. (2019). Innovative nano-carriers in anticancer drug deliverya comprehensive review. Bioorg. Chem., 85, 325–336. DOI: 10.1016/j.bioorg.2019.01.0 19
  • 20. Moku, B., Ravindar, L., Rakesh, K.P. & Qin H.-L. (2019). The signifi cance of N-methylpicolinamides in the development of anticancer therapeutics: Synthesis and structure-activity relationship (SAR) studies. Bioorg. Chem. 86, 513–537. DOI: 10.1016/j.bioorg.2019.02.0 30
  • 21. Zhang, X., Rakesh, K.P., Shantharam, C.S., Manukumar, H.M., Asir,i A.M., Marwani, H.M. & Qin, H.-L. (2018). Podo-phyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg. Med. Chem. 26, 340–355. DOI: 10.1016/j.bmc.2017.11.0 26
  • 22. Zha, G.-F., Qin, H.-L., Youssif, B.G.M., Amjad, M.W., Raja, M.A.G., Abdelazeem, A.H. & Bukhari, S.N.A. (2017). Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Europ. J. Med. Chem. 135, 34–48. DOI: 10.1016/j.ejmech.2017.04.0 25
  • 23. Qin, H.-L., Leng, J., Zhang, C.-P., Jantan, I., Amjad, M.W., Sher, M., Naeem-ul-Hassan, M., Hussain, M.A. & Bukhari, S.N.A. (2016). Synthesis of α,β-Unsaturated Carbo-nyl-Based Compounds, Oxime and Oxime Ether Analogs as Potential Anticancer Agents for Overcoming Cancer Multidrug Resistance by Modulation of Efflux Pumps in Tumor Cells. J. Med. Chem.59, 3549–3561. DOI: 10.1021/acs.jmedchem.6b002 76
  • 24. Qin, H.-L., Leng, J., Youssif, B.G.M., Amjad, M.W., Raja, M.A.G., Hussain, M.A., Hussain, Z., Kazmi, S.N. & Bukhari S.N.A. (2017). Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents. Chem. Biol. & Drug Design 90, 443–449. DOI: 10.1111/cbdd.129 64
  • 25. Singh, J., Sharma, S., Saxena, A.K., Nepali, K. & Bedi P.M.S. (2013). Synthesis of 1,2,3-triazole tethered bifunctional hybrids by click chemistry and their cytotoxic studies. Med. Chem. Res. 22, 3160–3169. DOI: 10.1007/s00044-012-0312 -7
  • 26. Singh, H., Singh, J.V., Gupta, M.K., Saxena, A.K., Sharma, S., Nepali, K. & Bedi, P.M.S. (2017). Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Letters 27, 3974–3979. DOI: 10.1016/j.bmcl.2017.07.0 69
  • 27. Kamath, P.R., Sunil, D., Joseph, M.M., Abdul, Salam, A.A. & T.T. S. (2017). Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur. J. Med. Chem. 136, 442–451. DOI: 10.1016/j.ejmech.2017.05.0 32
  • 28. Elshemy, H.A.H. & Zaki, M.A. (2017). Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. & Med. Chem.25, 1066–1075. DOI: 10.1016/j.bmc.2016.12.0 19
  • 29. Rizzk, Y., El-Deen, I., Mohammed, F., Abdelhamid, M. & Khedr, A. (2019). In Vitro Antitumor Evaluation of Some Hybrid Molecules Containing Coumarin and Quinolinone Moieties. Anti-cancer Agents in Med. Chem., 19(16), 2010–2018. DOI: 10.2174/1871520619666190930143856
  • 30. Song, X.F., Fan, J., Liu, L., Liu, X.F. & Gao, F. (2020). Coumarin derivatives with anticancer activities: An update. Arch. Pharm., 353, e2000025. DOI: 10.1002/ardp.202000025
  • 31. Akkol, E.K., Genç, Y., Karpuz, B., Sobarzo-Sánchez, E. & Capasso, R. (2020). Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 12, 1959. DOI: 10.3390/cancers12071959
  • 32. Al-Warhi, T., Sabt, A., Elkaeed, E.B. & Eldehna, W.M. (2020). Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg. Chem., 103, 104163. DOI: 10.1016/j.bioorg.2020.104163
  • 33. Goud, N.S., Kumar, P. & Bharath, R.W. (2020). Recent developments of target based coumarin derivatives as potential anticancer agents. Mini-Rev. Med. Chem., 20, 1754–1766. DOI: 10.2174/1389557520666200510000718
  • 34. Endo, S., Oguri, H., Segawa, J., Kawai, M., Hu, D., Xia, S., Okada, T., Irie, K., Fujii, S. & Gouda, H. (2020). Development of novel AKR1C3 inhibitors as new potential treatment for castration-resistant prostate cancer. Med. Chem., 63, 10396–10411. DOI: 10.1021/acs.jmedchem.0c00939
  • 35. Wang, C., Xi, D., Wang, H., Niu, Y., Liang, L., Xu, F., Peng, Y. & Xu, P. (2020). Hybrids of MEK inhibitor and NO donor as multitarget antitumor drugs. Eur. J. Med. Chem., 196, 112271. DOI: 10.1016/j.ejmech.2020.112271
  • 36. Xu, J., Li, H., Wang, X., Huang, J., Li, S., Liu, C., Dong, R., Zhu, G., Duan, C. & Jiang, F. (2020). Discovery of coumarin derivatives as potent and selective cyclin-dependent kinase 9 (CDK9) inhibitors with high antitumour activity. Eur. J. Med. Chem., 200, 112424. DOI: 10.1016/j.ejmech.2020.112424
  • 37. Sumorek-Wiadro, J., Zajac, A., Langner, E., Skalicka--Woźniak, K., Maciejczyk, A., Rzeski, W. & Jakubowicz-Gil, J. (2020). Antiglioma potential of coumarins combined with Sorafenib. Molecules 25, 5192. DOI: 10.3390/molecules25215192
  • 38. Sumorek-Wiadro, J., Zajac, A., Badziul, D., Langner, E., Skalicka-Woźniak, K., Maciejczyk, A., Wertel, I., Rzeski, W. & Jakubowicz-Gil, J. (2020). Coumarins modulate the anti-glioma properties of temozolomide. Eur. J. Pharmacol., 881, 173207. DOI: 10.1016/j.ejphar.2020.1732 07
  • 39. El-Deen, I. & Ibrahim, H. (2004). Synthesis and electron impact of mass spectra of 3-substituted chromeno [3, 2-c] chromen-6, 7-diones. Chem. Papers-Slovak Academy of Sci. 58, 200–20 4.
  • 40. El-Deen, I., Elgareib, M.S., Mahdy, A.R. & Al-Saleem, M.S. (2018). NMR Spectra Investigation of Some New Pre-pared Tetrasubstituted Coumarin Derivatives. Mens Agitat, 1 3.
  • 41. Moustafa, A.M.Y. & Bakare, S.B. (2019). Synthesis of Some Hybrid 7-Hydroxy Quinolinone Derivatives As Anti Breast Cancer Drugs. Res. Chem. Intermed. 45, 3895–3912. DOI: 10.1007/s11164-019-03827-y
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
W bibliografii brak poz. 18.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc5f0164-bebe-4e98-933e-e3d5728233be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.