PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Microbiological treatment of post-industrial water : Example of efficient bioremediation of the heavily polluted Kalina pond, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Kalina pond has been well known as a severely degraded area in the Silesia region, Poland. The environmental deterioration results from high contamination of water and bottom sediments with recalcitrant and toxic organic compounds, mainly phenol. The study was aimed at developing a bioremediation-based approach suitable for this type of polluted areas, involving microbiological treatment of water as a key and integral part of other necessary actions: mechanical interventions and the use of physical methods. During the initial biological treatment stage, autochthonous microorganisms were isolated from contaminated samples of water, soil and sediment, then subjected to strong selective pressure by incubation with the pollutants, and finally, cultivated to form a specialised microbial consortium consisting of five extremophilic bacterial strains. Consortium propagation and its biodegradation activity were optimised under variant conditions enabling bacteria to proliferate and to obtain high biomass density at large volumes allowing for the in situ application. After installing aeration systems in the pond, the consortium was surface-sprinkled to launch bioremediation and then both bacterial frequency and the contaminant level was systematically monitored. The complex remediation strategy proved efficient and was implemented on an industrial scale enabling successful remedial of the affected site. Treatment with the specifically targeted and adapted microbial consortium allowed for removal of most organic pollutants within a four-month season of 2022: the chemical oxygen demand (COD) value decreased by 72%, polyaromatic hydrocarbon (PAH) level by 97%, while the content of total phenols and other monoaromatic hydrocarbons (BTEX) dropped below the detection thresholds.
Wydawca
Rocznik
Tom
Strony
236--245
Opis fizyczny
Bibliogr. 53 poz., fot., mapa, rys., tab., wykr.
Twórcy
  • University of Agriculture in Kraków, Faculty of Biotechnology and Horticulture, Department of Plant Biology and Biotechnology, al. Mickiewicza 21, 31-120 Kraków, Poland
  • Remea Sp. z o. o., ul. Bonifraterska 17, 00-203 Warszawa, Poland
  • University of Agriculture in Kraków, Faculty of Biotechnology and Horticulture, Department of Plant Biology and Biotechnology, al. Mickiewicza 21, 31-120 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Mining Geodesy and Environmental Engineering, Department of Environmental Protection and Landscaping, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Remea Sp. z o. o., ul. Bonifraterska 17, 00-203 Warszawa, Poland
  • University of Agriculture in Kraków, Faculty of Biotechnology and Horticulture, Department of Plant Biology and Biotechnology, al. Mickiewicza 21, 31-120 Kraków, Poland
Bibliografia
  • Adedeji, J.A. et al. (2022) “Microbial bioremediation and biodegradation of petroleum products – A mini review,” Applied Sciences, 12(23), 12212. Available at: https://doi.org/10.3390/app122312212.
  • Aisami, A. et al. (2020) “Effect of temperature and pH on phenol biodegradation by a newly identified Serratia sp. AQ5-03,” Open Journal of Bioscience Research, 1(1), pp. 28–43. Available at: https://doi.org/10.52417/ojbr.v1i1.57.
  • Alori, E.T. et al. (2022) “Bioremediation techniques as affected by limiting factors in soil environment,” Frontiers in Soil Science, 2, 937186. Available at: https://doi.org/10.3389/fsoil.2022.937186.
  • Anekwe, I.M.S. and Isa, Y.M. (2023) “Bioremediation of acid mine drainage – Review,” Alexandria Engineering Journal, 65, pp. 1047–1075. Available at: https://doi.org/10.1016/j.aej.2022.09.053.
  • Aparicio, J.D. et al. (2022) “The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination,” Journal of Environmental Chemical Engineering, 10(2), 107141. Available at: https://doi.org/10.1016/j.jece.2022.107141.
  • Atest Higieniczny B-BK-60213-0341/21 “Biopreparat REMEA-K1” [Hygienic certificate B-BK-60213-0341/21 “Biopreparat REMEA-K1”]. Warszawa: Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny (PZH) – Państwowy Instytut Badawczy, May 19, 2021.
  • Bala, S. et al. (2022) “Recent strategies for bioremediation of emerging pollutants: A review for a green and sustainable environment,” Toxics, 10(8), p. 484. Available at: https://doi.org/10.3390/toxics10080484.
  • Bhandari, S. et al. (2021) “Microbial enzymes used in bioremediation,” Journal of Chemistry, 8849512. Available at: https://doi.org/10.1155/2021/8849512.
  • Bher, A. et al. (2022) “Biodegradation of biodegradable polymers in mesophilic aerobic environments,” International Journal of Molecular Sciences, 23(20), 12165. Available at: https://doi.org/10.3390/ijms232012165.
  • Chmist, J. and Hämmerling, M. (2016) “Wybór najskuteczniejszej metody rekultywacji zbiorników wodnych z wykorzystaniem metody AHP [Selecting the most effective method of recultivation of water reservoirs using the AHP method],” Acta Scientiarum Polonorum. Formatio Circumiectus, 15(2), pp. 27–39. Available at: https://doi.org/10.15576/ASP.FC/2016.15.2.27.
  • Curiel-Alegre, S. et al. (2022) “Evaluation of biostimulation, bioaugmentation, and organic amendments application on the bioremediation of recalcitrant hydrocarbons of soil,” Chemosphere, 307, 135638. Available at: https://doi.org/10.1016/j.chemosphere.2022.135638.
  • Dondajewska, R. et al. (2020) “Hypertrophic lakes and the results of their restoration in Western Poland,” in E. Korzeniewska and M. Harnisz (eds.) Polish river basins and lakes – Part II. The Handbook of Environmental, 87. Cham: Springer, pp. 373–399. Available at: https://doi.org/10.1007/978-3-030-12139-6_17.
  • Ghaima, K., Rahal, B.S. and Mohamed, M.M. (2017) “Biodegradation of phenol by Pseudomonas aeruginosa isolated from soil contaminated with diesel fuel,” Bioscience Research, 14, pp. 713–720.
  • Gmina Świętochłowice (2020) Projekt POIS.02.05.00-00-0105/16 “Poprawa, jakość środowiska miejskiego Gminy Świętochłowice – remediacja terenów zdegradowanych i zanieczyszczonych w rejonie stawu Kalina wraz z przywróceniem jego biologicznej aktywności” w ramach Programu Operacyjnego Infrastruktura i Środowisko 2014–2020, oś priorytetowa II Ochrona środowiska, w tym adaptacja do zmian klimatu, działanie 2.5: Poprawa jakości środowiska miejskiego. [Project POIS.02.05.00-00-0105/16 “Improvement, quality of the urban environment of the Municipality of Świętochłowice – remediation of degraded and polluted areas in the area of the Kalina pond together with restoration of its biological activity” under the Operational Programme Infrastructure and Environment 2014–2020, priority axis II Environmental protection, including adaptation to climate change, action 2.5: Improvement of the quality of the urban environment].
  • Jin, Y. et al. (2017) “Effects of environmental pollutants on gut microbiota,” Environmental Pollution, 222, pp. 1–9. Available at: https://doi.org/10.1016/j.envpol.2016.11.045.
  • Kaszycki, P. et al. (2010) “Aerobic process for in situ bioremediation of petroleum-derived contamination of soil: A field study based on laboratory microcosm tests,” Ecological Chemistry and Engineering. A, 17(4–5), pp. 405–414. Available at: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPG8-0044-0006 (Accessed: March 01, 2024).
  • Kaszycki, P. et al. (2022) “Bioremediacja wód zanieczyszczonych fenolami i wielopierścieniowymi węglowodorami aromatycznym z wykorzystaniem specjalistycznego konsorcjum autochtonicznych drobnoustrojów [Bioremediation of waters contaminated with phenols and polycyclic aromatic hydrocarbons with a specialized consortium of autochthonous microorganisms],” in M. Głodniok (ed.) Innowacyjna zielona gospodarka [An innovative green economy]. Katowice: Główny Instytut Górnictwa, pp. 21–37.
  • Kiefer, P., Heinzle, E. and Wittmann, C. (2002) “Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum,” Journal of Industrial Microbiology and Biotechnology, 28, pp. 338–343. Available at: https://doi.org/10.1038/sj/jim/7000252.
  • Kumar, L. et al. (2022) “Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies,” Process Safety and Environmental Protection, 159, pp. 362–375. Available at: https://doi.org/10.1016/j.psep.2022.01.009.
  • Kupiec, J. et al. (2022) “Evaluation of the effectiveness of the SED-BIO system in reducing the inflow of selected physical, chemical and biological pollutants to a lake,” Water, 14(2), 239. Available at: https://doi.org/10.3390/w14020239.
  • Li, J. et al. (2020) “Autochthonous bioaugmentation with non-direct degraders: A new strategy to enhance wastewater bioremediation performance,” Environment International, 136, 105473. Available at: https://doi.org/10.1016/j.envint.2020.105473.
  • Mahgoub, S.A. et al. (2023) “Characterization and biodegradation of phenol by Pseudomonas aeruginosa and Klebsiella variicola strains isolated from sewage sludge and their effect on soybean seeds germination,” Molecules, 28(3), 1203. Available at: https://doi.org/10.3390/molecules28031203.
  • Mazur, R., Jakubiak, M. and Santos, L. (2023) “Environmental factors affecting the efficiency of water reservoir restoration using microbiological biotechnology,” Sustainability, 16(1), 266. Available at: https://doi.org/10.3390/su16010266.
  • Mazur, R. and Sitarek, M. (2020) “Microbiological bioremediation of the Kamienna Góra dam reservoir,” Acta Scientiarum Polonorum Formatio Circumiectus, 19(1), pp. 47–59. Available at: https://doi.org/10.15576/asp.fc/2020.19.1.47.
  • Mazurkiewicz, J. et al. (2020) “The process of microbiological remediation of the polluted Słoneczko Reservoir in Poland: For reduction of water pollution and nutrients management,” Water, 12(11), 3002. Available at: https://doi.org/10.3390/w12113002.
  • Mei, R. et al. (2019) “Characterization of a pH-tolerant strain Cobetia sp. SASS1 and its phenol degradation performance under salinity condition,” Frontiers in Microbiology, 10, 2034. Available at: https://doi.org/10.3389/fmicb.2019.02034.
  • Michalska, J. et al. (2019) “Impact of the biological cotreatment of the Kalina pond leachate on laboratory sequencing batch reactor operation and activated sludge quality,” Water, 11(8), 1539. Available at: https://doi.org/10.3390/w11081539.
  • Michalska, J. et al. (2020a) “Analysis of the bioaugmentation potential of Pseudomonas putida OR45a and Pseudomonas putida KB3 in the sequencing batch reactors fed with the phenolic landfill leachate,” Water, 12(3), 906. Available at: https://doi.org/10.3390/w12030906.
  • Michalska, J. et al. (2020b) “Selecting bacteria candidates for the bioaugmentation of activated sludge to improve the aerobic treatment of landfill leachate,” Water, 12(1), 140. Available at: https://doi.org/10.3390/w12010140.
  • Mishra, V.K. and Kumar, N. (2017) “Microbial degradation of phenol: A review,” Journal of Water Pollution & Purification Research, 4(1), pp. 17–22. Available at: https://doi.org/10.37591/jowppr.v4i1.465.
  • Molina-Ramírez, C. et al. (2017) “Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis,” Materials, 10(6), 639. Available at: https://doi.org/10.3390/ma10060639.
  • Muter, O. (2023) “Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps,” Microorganisms, 11(3), 710. Available at: https://doi.org/10.3390/microorganisms11030710.
  • Noszczyńska, M. et al. (2020) “A comprehensive study on bisphenol. A degradation by newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12,” Biodegradation, 32(1), pp. 1–15. Available at: https://doi.org/10.1007/s10532-020-09919-6.
  • Panigrahy, N., Barik, M.R. and Sahoo, N.K. (2020) “Kinetics of phenol biodegradation by an indigenous Pseudomonas citronellolis NS1 isolated from coke oven wastewater,” Journal of Hazardous, Toxic, and Radioactive Waste, 24(3). Available at: https://doi.org/10.1061/(asce)hz.2153-5515.0000502.
  • PN-EN ISO 17993:2005. Jakość wody. Oznaczanie 15 wielopierścieniowych węglowodorów aromatycznych (WWA) w wodzie metodą HPLC z detekcją fluorescencyjną po ekstrakcji ciecz-ciecz [Water quality. Determination of 15 polycyclic aromatic hydrocarbons (PAHs) in water by HPLC with fluorescence detection after liquid-liquid extraction]. Warszawa: Polski Komitet Normalizacyjny.
  • PN-ISO 11423-1:2002. Jakość wody. Oznaczanie benzenu i niektórych pochodnych. Część 1: Metoda analizy fazy nadpowierzchniowej z zastosowaniem chromatografii gazowej [Water quality. Determination of benzene and some derivatives. Part 1: The method of headspace analysis with the use of gas chromatography]. Warszawa: Polski Komitet Normalizacyjny.
  • Poi, G. et al. (2017) “Bioremediation of phenol-contaminated industrial wastewater using a bacterial consortium – from laboratory to field,” Water Air and Soil Pollution, 228, 89. Available at: https://doi.org/10.1007/s11270-017-3273-0.
  • Rączka, J., Skąpski, K. and Tyc, T. (2021) Zasoby wodne w Polsce – ochrona i wykorzystanie [Water resources in Poland – protection and use. Warszawa: Fundacja Przyjazny Kraj. Available at: http://przyjaznykraj.pl/wp-content/uploads/2021/06/Fundacja_Przyjazny_Kraj_Raport_Zasoby-wodne-w-Polsce_29062021.pdf (Accessed: May 05, 2023).
  • REMEA and Menard (2020) Remediation of the Kalina pond, Poland. Available at: https://www.remea-group.com/en/focus/remediation-kalina-pond-poland/ (Accessed: October 05, 2023).
  • Sarwade, V. and Gawai, K.R. (2014) “Biodegradation of benzidine by alkaliphilic strain Bacillus badius D,” IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(11), pp. 73–78. Available at: https://doi.org/10.9790/2402-081137380.
  • Silva da, I.G.S. et al. (2020) “Soil bioremediation: Overview of technologies and trends,” Energies 13, pp. 4664–4689. Available at: https://doi.org/10.3390/en13184664.
  • Singh, P. et al. (2020) “Bioremediation: A sustainable approach for management of environmental contaminants,” in P. Singh, A. Kumar and A. Borthakur (eds.) Abatement of Environmental Pollutants, pp. 1–23. Available at: https://doi.org/10.1016/b978-0-12-818095-2.00001-1.
  • Siwek, A. (2015) Sprawozdanie z badań powietrza w rejonie stawu Kalina w Świętochłowicach, część I. nr 1097/UMŚ/15 [Report on air examination in the area of the Kalina pond in Świętochłowice, part I. No. 1097/UMŚ/15]. Katowice: Laboratorium Badań Środowiskowych.
  • Supel, P., Petryszak, P. and Kaszycki, P. (2013) “Bioremediacja gleby zanieczyszczonej ksenobiotykami z wykorzystaniem autochtonicznych drobnoustrojów glebowych: 2. Przykłady i perspektywy zastosowań [Bioremediation of soil contaminated with xenobiotics with the use of autochthonous soil microorganisms. 2. Examples and prospects for applications],” EPISTEME: Czasopismo Naukowo-Kulturalne, 20(1), pp. 201–218. Available at: https://repo.ur.krakow.pl/info/article/URce3d46fe6cc34ee5a6ffce21821761d9/ (Accessed: March 01, 2024).
  • Tiku, D.K. et al. (2010) “Holistic bioremediation of pulp mill effluents using autochthonous bacteria,” International Biodeterioration & Biodegradation, 64(3), pp. 173–183. Available at: https://doi.org/10.1016/j.ibiod.2010.01.001.
  • Tkaczyk, A.M., Pietrzak, M. and Kołak, G. (2005) “Case of the environment reclamation in the region of Kalina pond in Świętochłowice,” Polish Geological Institute Special Papers, 17, pp. 77–83. Available at: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUS6-0021-0051 (Accessed: March 01, 2024).
  • Vasilachi, I.C. et al. (2021) “Occurrence and fate of emerging pollutants in water, environment and options for their removal,” Water, 13, 181. Available at: https://doi.org/10.3390/w13020181.
  • Wang, Y. et al. (2007) “Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12,” Journal of Environmental Sciences, 19(2), pp. 222–225. Available at: https://doi.org/10.1016/s1001-0742(07)60036-9.
  • Wei, Z. et al. (2021) “A review on phytoremediation of contaminants in air, water and soil,” Journal of Hazardous Materials, 403, 123658. Available at: https://doi.org/10.1016/j.jhazmat.2020.123658.
  • WHO (2022) Food safety: Persistent organic pollutants (POPs). Geneva: World Health Organization. Available at: https://www.who.int/news-room/questions-and-answers/item/food-safety-persistent-organic-pollutants-(pops) (Accessed: May 05, 2023).
  • Xu, J. et al. (2020) “Oil-addicted biodegradation of macro-alkanes in soils with activator,” Biochemical Engineering Journal, 159, 107578. Available at: https://doi.org/10.1016/j.bej.2020.107578.
  • Yadav, B.K., Shrestha, S.R. and Hassanizadeh, S.M. (2012) “Biodegradation of toluene under seasonal and diurnal fluctuations of soil-water temperature,” Water Air and Soil Pollution, 223(7), pp. 3579–3588. Available at: https://doi.org/10.1007/s11270-011-1052-x.
  • Zamorska, J. and Kiełb-Sotkiewicz, I. (2021) “A biological method of treating surface water contaminated with industrial waste leachate,” Water, 13(24), 3644. Available at: https://doi.org/10.3390/w13243644.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc5e1e6f-d536-41b8-a0cf-88072626c83a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.