PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FPGA Implementation of Multi-scale Pedestrian Detection in Thermal Images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper an embedded vision system for human silhouette detection in thermal images is presented. As the computing platform a reprogrammable device (FPGA – Field Programmable Gate Array) is used. The detection algorithm is based on a sliding window approach, which content is compared with a probabilistic template. Moreover, detection is four scales in supported. On the used test database, the proposed method obtained 97% accuracy, with average one false detection per frame. Due to the used parallelization and pipelining real-time processing for 720 × 480 @ 50 fps and 1280 × 720 @ 50 fps video streams was achieved. The system has been practically verified in a test setup with a thermal camera.
Twórcy
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • [1] Bailey, D.G. (2011). Design for embedded image processing on FPGAs. John Wiley & Sons.
  • [2] Benenson, R., Omran, M., Hosang, J., Schiele, B. (2014, September). Ten years of pedestrian detection, what have we learned?. In European Conference on Computer Vision (pp. 613-627). Springer International Publishing
  • [3] Bulat, B., Kryjak, T., Gorgon, M. (2014, September). Implementation of advanced foreground segmentation algorithms gmm, vibe and pbas in fpga and gpu-a comparison. In International Conference on Computer Vision and Graphics (pp. 124-131). Springer International Publishing
  • [4] Dalal, N., Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 886-893). IEEE
  • [5] Fukui, H., Yamashita, T., Yamauchi, Y., Fujiyoshi, H., Murase, H. (2015, June). Pedestrian detection based on deep convolutional neural network with ensemble inference network. In Intelligent Vehicles Symposium (IV), 2015 IEEE (pp. 223-228). IEEE
  • [6] Geronimo, D., Lopez, A.M., Sappa, A.D., Graf, T. (2010). Survey of pedestrian detection for advanced driver assistance systems. IEEE transactions on pattern analysis and machine intelligence, 32(7), 1239-1258
  • [7] Hurney, P., Waldron, P., Morgan, F., Jones, E., Glavin, M. (2015). Review of pedestrian detection techniques in automotive far-infrared video. IET intelligent transport systems, 9(8), 824-832
  • [8] Lakshmi, A., Faheema, A.G.J., Deodhare, D. (2016). Pedestrian detection in thermal images: An automated scale based region extraction with curvelet space validation. Infrared Physics & Technology, 76, 421-438
  • [9] Nanda, H., Davis, L. (2002, June). Probabilistic template based pedestrian detection in infrared videos. In Intelligent Vehicle Symposium, 2002. IEEE (Vol. 1, pp. 15-20). IEEE
  • [10] Negied, N.K., Hemayed, E.E., Fayek, M. B. (2015). Pedestrians’ detection in thermal bands-Critical survey. Journal of Electrical Systems and Information Technology, 2(2), 141-148
  • [11] Walczyk, R. (2013). Hardware architectures for infrared pedestrian detection systems
  • [12] Walczyk, R., Armitage, A., Binnie, T.D. (2009). An embedded real-time pedestrian detection system using an infrared camera
  • [13] Walczyk, R., Balazs, A., Armitage, A., Binnie, T.D. (2011). System architectures for infrared pedestrian tracking
  • [14] Xiao, H., Song, H., He, W., Yuan, K. (2015, August). Real-time shape and pedestrian detection with FPGA. In Mechatronics and Automation (ICMA), 2015 IEEE International Conference on (pp. 2381-2386). IEEE
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc5a5784-ebd4-40d6-94bb-eba6246f57e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.