PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Water Stress and Temperature on Metabolites and Essential Oil of Rosmarinus officinalis (Phytochemical Screening, Extraction, and Gas Chromatography)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, climate change is disrupting life on Earth by causing imbalances in the biosphere. This work aimed to evaluate the impact of climate change on the content of primary and secondary metabolites and the yield of essential oil of Rosmarinus officinalis. Thus, the results of the conducted experiment show that the content of primary metabolites decreased with increasing temperature and decreasing precipitation along the experiment(proteins from 7.61% to 7.14%, carbohydrates from 6.92% to 5.64%, fats from 1.48% to 1.29% and dietary fiber from 4.96% to 4.22% and mineral composition: Ca from 7.67% to 5.98%, Mg from 8.61% to 7.01%, Fe from 7.53% to 7.21% and Mn from 6.85% to 3.97%), and the content of secondary metabolites increased in the second year when increasing the temperature by 5 °C and water stress by 50% (coumarin from 6.59% to 10.99%, saponins from 7.15% to 8.46%, tannin from 3.92% to 5.95%, alkaloids from 6.69% to 15.62% and flavonoid from 8.02% to 15.75%),but in the fourth year when the temperature continued to increase and water stress was 75% the content of secondary metabolites decreased (coumarin from 10.99% to 8.27%, saponins from 8.46% to 7.87%, tannin from 5.95% to 4.85%, alkaloids from 15.62% to 10.68% and flavonoid from 15.75% to 11.36%)and the same results were obtained for the yield of essential oil which increased in the second year and decreased in the fourth year. This GC analysis of the three essential oil samples shows that the majority of compounds in the three essential oils studied are cineole (S1:45.98%, S2:55.36%, S3:43.08%) followed by camphor (S1:17.44%, S2:21.44%, S3:21.56%) and Alpha-pinene (S1:9.30%, S2:8.34%, S3: 9.17%) and other compounds in low percentage.
Rocznik
Strony
237--248
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Laboratory of Electrochemistry, Modeling, and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences Fes, Morocco
  • Laboratory of Electrochemistry, Modeling, and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences Fes, Morocco
  • Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
  • Laboratory of Electrochemistry, Modeling, and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences Fes, Morocco
autor
  • Laboratory of Electrochemistry, Modeling, and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences Fes, Morocco
  • Laboratory of Electrochemistry, Modeling, and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences Fes, Morocco
  • Environmental Process Engineering Laboratory, Faculty of Science and Technology Mohammedia, Hassan II University of Casablanca, Morocco
  • Laboratory of Electrochemistry, Modeling, and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences Fes, Morocco
  • Laboratory of Electrochemistry, Modeling, and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences Fes, Morocco
Bibliografia
  • 1. Cisse A.B. 2022. Perception du changement climatique et stratégies d’adaptation paysannes à Louga,revue espace geogrphique et société marocaine, 60, 223–242.
  • 2. Ahmed S. 2019. Environmental factors variably impact tea secondary metabolites in the context of climate change. Front Plant Sci, 10(939),1–16.
  • 3. Alhaithloul H.A. 2019. Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of mentha piperita and catharanthus roseus subjected to drought and heat stress. Biomolecules, 10(1), 1–21.
  • 4. Eric B. 2022. Impacts du changement climatique à l’échelle mondiale: principaux enseignements du dernier rapport du groupe de travail II du GIEC. Responsabilité et environnement, 106, 17–20.
  • 5. Ashraf M.A. 2018. Environmental stress and secondary metabolites in plants. In: Plant Metabolites and Regulation Under Environmental Stress. Elsevier, 153–167.
  • 6. Baguia B. 2018. Saponines des racines de Securidaca longipedunculata (Polygalaceae): Quantification et évaluation anti-oxydante. Nature & Technology, 26–30.
  • 7. Baher Z.F. 2002. The influence of water stress on plant height, herbal and essential oil yield and composition inSatureja hortensis L. Flavour and Fragrance Journal, 17, 275–277.
  • 8. Bouterfas K. 2013. Quantification de quelques polyphénols de Marrubium vulgare L. du mont de Tessala (Algérie occidentale) pendant les deux périodes de végétation et de floraison. Les Technologies De Laboratoire, 8(31), 34–41.
  • 9. Chávez A. 2022. Influence of drought, high temperatures, and/or defense against arthropod herbivory on the production of secondary metabolites in maize plants. A review. Current Plant Biology, 32, 1–9.
  • 10. Picon C. 2013. Impacts du changement climatique sur les prairies permanentes, Fourrages 214, 127–134.
  • 11. Bidgoli R.D. 2018. Effect of drought stress on some morphological characteristics, quantity and quality of essential oil in Rosemary (Rosmarinus officinalis L.). Advancement in Medicinal Plant Research, 6, 40–45.
  • 12. Farhoudi R. 2013. Effect of drought stress on chemical constituents, photosynthesis and antioxidant properties of rosmarinus officinalis essential oil. Journal of Medicinal Plants and By-products, 1, 17–22.
  • 13. Gao S. 2020. Effects of drought stress on growth, physiology and secondary metabolites of Two Adonis species in Northeast China. Scientia Horticulturae, 259, 1–10.
  • 14. Griesser M. 2015. Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir). Plant Physiology and Biochemistry, 88, 17–26.
  • 15. Hessini K. 2022.Graded Moisture Deficit Effect on Secondary Metabolites, Antioxidant, and Inhibitory Enzyme Activities in Leaf Extracts of Rosa damascena Mill. var. trigentipetala. Horticulturae, 8(2), 2–13.
  • 16. Jan R.2021. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 1–31.
  • 17. Keshavarz H. 2020. Study of water deficit conditions and beneficial microbes on the oil quality and agronomic traits of canola (Brassica napus L.). Grasas y Aceites, 1(3), 1–13.
  • 18. Konte M.A. 2021. impacts du changement climatique sur la production du maïs au mali. Annales de l’Université Marien NGOUABI, 21(2), 132–155.
  • 19. Kouamé R. 2019. Impact de la variabilité des facteurs climatiques sur le développement du système racinaire du riz pluvial sur un sol Arenic gleyic dans la région du Gbêkê, Côte d’Ivoire, Afrique Science, 15(1), 83–96.
  • 20. Podda A. 2019. Drought stress modulates secondary metabolites in Brassica oleracea L. convar. acephala (DC) Alef, var. sabellica L. J Sci Food Agric, 99, 5533–5540.
  • 21. Rahimi A. 2022. Effects of stress modifier biostimulants on vegetative growth, nutrients, and antioxidants contents of garden thyme (Thymus vulgaris L.) under water deficit conditions. J Plant Growth Regul, 41, 2059–2072.
  • 22. Ruffin N. 2022. Local impacts of climate change in the coastal area of Muanda in the Democratic Republic of Congo (DRC). International Journal of Innovation and Applied Studies, 36(2), 525–534.
  • 23. Saber M. 2021. Chemical composition and antioxidant activities of essential oils and extracts from cones of Tetraclinis articulata (Vahl) Masters. International Journal of Secondary Metabolite, 8(4), 352–363.
  • 24. Sancho D. 2017. Changes of secondary metabolites in Pinus sylvestris L. needles under increasing soil water deficit. Annals of Forest Science, 74(2017), 1–10.
  • 25. Sarmoum R. 2019. Effect of salinity and water stress on the essential oil components of Rosemary (Rosmarinus officinalis L.). Agronomy, 9(5), 1–10.
  • 26. Thibaudon M. 2022. Réchauffement climatique et pollen, Revue française d’allergologie, 62, 221–223.
  • 27. Ubertosi M. 2022. Adaptation des systèmes de production agricole aux changements de contexte environnemental, agricole et social, et place des légumineuses dans la transition agroécologique, Innovations Agronomiques, 86, 419–437.
  • 28. Xu B., Gao M., Hu W., et al. 2022. Individual and interactive influences of elevated air temperature and soil drought at the flowering and boll-forming stage on cottonseed yield and nutritional quality. The Crop Journal, 1, 128–139.
  • 29. Yang H., Xiao X., Li J., et al. 2022. Chemical compositions of walnut (Juglans Spp.) oil: Combined Effects Of Genetic And Climatic Factors. Forests, 13(6), 1–14.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc57eb3b-2c51-4c38-addd-07f34db5b1c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.