Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We propose a new observer where the model, decomposed in generalized canonical form of regulation described by Fliess, is dissociated from the part assuring error correction. The obtained stable exact estimates give direct access to state variables in the form of successive derivatives. The dynamic response of the observer converges exponentially, as long as the nonlinearities are locally of Lipschitz type. In this case, we demonstrate that a quadratic Lyapunov function provides a number of inequalities which guarantee at least local stability. A synthesis of gains is proposed, independent of the observation time scale. Simulations of a Düffing system and a Lorenz strange attractor illustrate theoretical developments.
Rocznik
Tom
Strony
569--583
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
autor
- Laboratory of Inventive Design (LGECO), EA 3938 INSA Strasbourg, University of Strasbourg, 24 Boulevard de la Victoire, 67000 Strasbourg, France
autor
- Laboratory of Inventive Design (LGECO), EA 3938 INSA Strasbourg, University of Strasbourg, 24 Boulevard de la Victoire, 67000 Strasbourg, France
autor
- Laboratory of Engineering, Informatics and Imaging (ICUBE), University of Strasbourg, UMR 7357 CNRS, 2 Rue Boussingault, 67000 Strasbourg, France
autor
- Nancy Research Center in Automatic (CRAN), UMR 7039, University of Lorraine, CNRS, 2 Avenue de Haye, 54516 Vandoeuvre lès Nancy, France
Bibliografia
- [1] Alma, M. and Darouach, M. (2014). Adaptive observers design for a class of linear descriptor systems, Automatica 50(2): 578–583.
- [2] Bestle, D. and Zeitz,M. (1983). Canonical form observer design for non-linear time-variable systems, International Journal of Control 38(2): 419–431.
- [3] Bezzaoucha, S., Marx, B., Maquin, D. and Ragot, J. (2013). State and parameter estimation for time-varying systems: A Takagi–Sugeno approach, American Control Conference (ACC), Washington, DC, USA, pp. 1050–1055.
- [4] Bodizs, L., Srinivasan, B. and Bonvin, D. (2011). On the design of integral observers for unbiased output estimation in the presence of uncertainty, Journal of Process Control 21(3): 379–390.
- [5] Boker, A. and Khalil, H. (2013). Nonlinear observers comprising high-gain observers and extended Kalman filters, Automatica 49(12): 3583–3590.
- [6] Bouraoui, I., Farza, M., Ménard, T., Abdennour, R.B., M’Saad, M. and Mosrati, H. (2015). Observer design for a class of uncertain nonlinear systems with sampled outputs: Application to the estimation of kinetic rates in bioreactors, Automatica 55: 78–87.
- [7] Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423–430, DOI: 10.2478/v10006-011-0031-0.
- [8] Ciccarella, G., Mora, M.D. and Germani, A. (1993). A Luenberger-like observer for nonlinear systems, International Journal of Control 57(3): 537–556.
- [9] Efimov, D. and Fridman, L. (2011). Global sliding-mode observer with adjusted gains for locally Lipschitz systems, Automatica 47(3): 565–570.
- [10] Farza, M., Bouraoui, I., Ménard, T., Abdennour, R.B. and M’Saad, M. (2014). Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs, Automatica 50(11): 2951–2960.
- [11] Farza, M., M’Saad, M., Triki, M. and Maatoug, T. (2011). High gain observer for a class of non-triangular systems, Systems and Control Letters 60(1): 27–35.
- [12] Fliess, M. (1990). Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Transactions on Automatic Control 35(9): 994–1001.
- [13] Gauthier, J. and Bornard, G. (1981). Observability for any u(t) of a class of nonlinear systems, IEEE Transactions on Automatic Control AC-26(4): 922–926.
- [14] Gauthier, J., Hammouri, H. and Othman, S. (1992). A simple observer for nonlinear systems. Applications to bioreactors, IEEE Transactions on Automatic Control 37(6): 875–880.
- [15] Ghosh, D., Saha, P. and Chowdhury, A. (2010). Linear observer based projective synchronization in delay Roessler system, Communications in Nonlinear Science and Numerical Simulation 15(6): 1640–1647.
- [16] Gille, J., Decaulne, P. and Pélegrin, M. (1988). Systèmes asservis non linéaires, 5 ième edn, Dunod, Paris.
- [17] Gißler, J. and Schmid, M. (1990). Vom Prozeß zur Regelung. Analyse, Entwurf, Realisierung in der Praxis, Siemens, Berlin/München.
- [18] Glumineau, A. and Lôpez-Morales, V. (1999). Transformation to State Affine System and Observer Design, Lecture Notes in Control and Information Science, Vol. 244, Springer, London.
- [19] Guerra, T., Estrada-Manzo, V. and Lendek, Z. (2015). Observer design for Takagi–Sugeno descriptor models: An LMI approach, Automatica 52: 154–159.
- [20] Hermann, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control AC-22(5): 728–740.
- [21] Krener, A. and Isidori, A. (1983). Linearization by output injection and nonlinear observers, Systems & Control Letters 3(1): 47–52.
- [22] Lorenz, E. (1963). Deterministic nonperiodic flow, Journal of the Atmospheric Sciences 20(2): 130–141.
- [23] Luenberger, D. (1966). Observers for multivariable systems, IEEE Transactions on Automatic Control AC-11(2): 190–197.
- [24] Martínez-Guerra, R., Mata-Machuca, J., Aguilar-López, R. and Rodríguez-Bollain, A. (2011). Applications of Chaos and Nonlinear Dynamics in Engineering, Vol. 1, Springer-Verlag, Berlin/Heidelberg.
- [25] Mazenc, F. and Dinh, T. (2014). Construction of interval observers for continuous-time systems with discrete measurements, Automatica 50(10): 2555–2560.
- [26] Menini, L. and Tornambè, A. (2011). Design of state detectors for nonlinear systems using symmetries and semi-invariants, Systems and Control Letters 60(2): 128–137.
- [27] Mobki, H., Sadeghia, M. and Rezazadehb, G. (2015). Design of direct exponential observers for fault detection of nonlinear MEMS tunable capacitor, IJE Transactions A: Basics 28(4): 634–641.
- [28] Morales, A. and Ramirez, J. (2002). A PI observer for a class of nonlinear oscillators, Physics Letters A 297(3–4): 205–209.
- [29] Raghavan, S. and Hedrick, J. (1994). Observer design for a class of nonlinear systems, International Journal of Control 59(2): 515–528.
- [30] Rauh, A., Butt, S.S. and Aschemann, H. (2013). Nonlinear state observers and extended Kalman filters for battery systems, International Journal of Applied Mathematics and Computer Science 23(3): 539–556, DOI: 10.2478/amcs-2013-0041.
- [31] Röbenack, K. and Lynch, A. (2004). An efficient method for observer design with approximately linear error dynamics, International Journal of Control 77(7): 607–612.
- [32] Röbenack, K. and Lynch, A.F. (2006). Observer design using a partial nonlinear observer canonical form, International Journal of Applied Mathematics and Computer Science 16(3): 333–343.
- [33] Schwaller, B., Ensminger, D., Dresp-Langley, B. and Ragot, J. (2013). State estimation for a class of nonlinear systems, International Journal of Applied Mathematics and Computer Science 23(2): 383–394, DOI: 10.2478/amcs-2013-0029.
- [34] Söffker, D., Yu, T. and Müller, P. (1995). State estimation of dynamical systems with nonlinearities by using proportional-integral observers, International Journal of Systems Science 26(9): 1571–1582.
- [35] Thabet, R., Raïssi, T., Combastel, C., Efimov, D. and Zolghadri, A. (2014). An effective method to interval observer design for time-varying systems, Automatica 50(10): 2677–2684.
- [36] Tornambè, A. (1992). High-gain observers for non-linear systems, International Journal of Systems Science 23(9): 1475–1489.
- [37] Tyukina, I., Steurb, E., Nijmeijerc, H. and van Leeuwenb, C. (2013). Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters, Automatica 49(8): 24092423.
- [38] Veluvolu, K., Soh, Y. and Cao, W. (2007). Robust observer with sliding mode estimation for nonlinear uncertain systems, IET Control Theory and Applications 1(5): 15331540.
- [39] Zeitz, M. (1985). Canonical forms for nonlinear-systems, in B. Jakubczyk et al. (Eds.), Proceedings of the Conference on Geometric Theory of Nonlinear Control Systems, Wrocław Technical University Press, Wrocław, pp. 255–278.
- [40] Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems and Control Letters Archive 9(2): 149–156.
- [41] Zheng, G., Boutat, D. and Barbot, J. (2009). Multi-output dependent observability normal form, Nonlinear Analysis: Theory, Methods and Applications 70(1): 404–418.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc5651d7-ba9a-4b53-a671-91d6b1d42400