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A free vibration analysis of homogeneous and isotropic circular thin plates with nonlinear thickness variation 
and clamped edges is considered. The limited independent solutions of differential Euler equation were expanded 
in the power series based on the properties of integral equations. The analytical frequency equations as power 
series were obtained using the method of successive approximations.  
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1. Introduction 
 
 The study of the vibration of a thin circular plate is basic in structural mechanics. Components of 
circular plates are commonly used in aerospace industries and aviation as well as in marine and civil 
engineering applications. The natural frequencies of circular plates have been studied extensively for more 
than a century. If only the frequency of the external load matches the natural frequency of the plate, 
destruction may occur. Knowledge about the distribution of variable values of mass and stiffness can allow 
shaping the dynamic behavior of structural elements such us circular and annular plates.  

The free vibration of circular plates of constant and variable thickness has received considerable 
attention in the literature. The work of Leissa [1] is an excellent source of information about methods used 
for free vibration analysis of plates. Conway [2, 3] analyzed the axisymmetric vibration of thin circular 
plates with a power function thickness variation under particular Poisson's ratio in terms of Bessel functions. 
Jain et al. [4] studied the axisymmetric vibration of thin circular plates of linearly varying thickness using by 
Frobenius method. Wang [5] used the power series method for free vibration analysis of circular thin plates 
of power varying thickness. Wu and Liu [6, 7] proposed a generalized differential quadrature rule (GDQR) 
for the free vibration analysis of circular thin plates of constant and variable thickness. Jaroszewicz and 
Zoryj [8] studied free vibration of circular thin plates of variable distribution of parameters using the method 
of partial discretization (MPD). Zhou et al. [9] applied a Hamiltonian approach to the solution of a free 
vibration problem of circular and annular thin plates. Duan et al. [10] proposed the DSC element method for 
the free vibration analysis of circular thin plates with constant and stepped thickness. Żur [11, 12] analyzed 
free vibration of thin circular and annular plates of constant and nonlinear variable thickness.  

This article examines the circular plate whose thickness decreases with the distance from the centre 
of symmetry. Any profile with a sufficient approximation can be replaced with a hyperbole with the index 
m<0. Natural frequencies of axisymmetric vibrations of a circular plate with clamped edges were determined 
on the basis of the solution of an appropriate boundary problem.  

The paper presents a hyperbolic circular plate made of different materials, e.g., aluminum and tin. It 
has been shown that the effect of Poisson's ratio on the coefficient of the fundamental frequency in the case 
m<0 (disc) is different than in the case m>0, because if it increases from 0 to 0.5, the factor is monotonically 
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increasing in the case of the disc. The method of influence function, characteristic series and Bernstein 
estimates are used. The studied case corresponds to m = -1 and values of Poisson's ratio in the range 0 <ν 
<0.5. By way of example, the effect of material and resilient constants have been examined for discs made of 
aluminum and tin, and a conclusion was drawn for the effect of the parameter m (m = -1, m = 2) on the basic 
frequency, which was confronted with the case of the plate with constant thickness (m = 0). 
 
2. Statement of the problem 
 
 The subject of the examination was a clamped, circular plate of the radius R (Fig.1) whose stiffness 
D and thickness h are power functions of the radial coordinate r 
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where: D0, h0 and m are set constants.  
 

 
 

Fig.1. A model of examined plate, Jaroszewicz and Zoryj [14]. 
 
 The analysis of natural, transverse and axisymmetric vibrations of such plates is carried out on the 
basis of an adequate boundary problem 
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  u(R) = 0;      u'(R) = 0, (2.3) 
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where: u = u(r) – the amplitude of deflection, ρ – the specific density of a material, ω – the frequency,  
ν – Poisson's coefficient, E – Young’s modulus. The following case shall be examined, where m = –1.  
Then 
 

 
2R

r = 0,5R

1
,2

6
 h

o
 

h
o

 



Natural frequencies of axisymmetric vibrations of thin … 453 

 

  
( )

[ ] IV II I
0 2

1 2 1
L u u u u

rr

   
    (2.5) 

 
where Eqs (2.2) takes the character below 
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 First of all, linear independent solutions of the following equation are found L0[u] = 0 
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 It is worth noting that only the first two solutions, along with their derivatives of any order, are 
limited, and the next two have unlimited derivatives, starting from the derivative of the third row, since 
0<ν<0.5. Hence the solutions of Eq.(2.6) can be written in the following form 
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where K0(r, α) - Cauchy's function, multiplied by Heaviside's function is a function of the impact or the 
fundamental function of the operator L0[u]. When the integrals are designated (2.10) we can find solutions 
(2.9) which are quick-running series. In particular, when it is limited to i = 1, 2, the result is Jaroszewicz and 
Zoryj [14] 
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 Thus, the limited (for r=0) solution of Eq.(2.6) will be defined by the formula u(r) = AU + BV, 
where A and B are arbitrary integral constants. By substituting them to the boundary conditions (2.3), the 
equation of frequency is obtained 
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3. Solution of the problem 
 
 Acting on Eq.(2.14) and taking Eqs (2.6), (2.12) and (2.13) into consideration, it was possible to 
determine the first three coefficients of a distinctive series  in the form of a power series with respect to the 
frequency parameter 
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 Referring to formulas (2.13) - (3.2), A1(ν) and A2(ν) can be calculated for selected frequencies ν, 
where A0≡1. The results of these calculations are presented in Tab.1. 
 
Table 1. Values of the first two coefficients of the distinctive series. 
 

ν 0 1/9 2/9 3/9 4/9 0,5 

A1(ν) 0.0092928 0.0083915 0.007461 0.0064991 0.0055045 0.0049951 

A2(ν) 0.000002 0.0000016 0.0000012 0.0000009 0.0000007 0.0000005 

 
 By using the simplest double-sided Bernstein - Keropian estimators it is possible to calculate the 
following, with under and over score, Jaroszewicz et al. [15] 
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 The results of calculation of the fundamental frequencies coefficient corresponding to Eq.(2.5) are 
shown in Tab.2. 
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Table 2. Values of estimators of the basic frequency coefficient. 
 

ν 0 1/9 2/9 3/9 4/9 0,5 

γ- 18.65 19.61 20.76 22.23 24.23 25.30

γ+ 18.68 19.64 20.79 22.26 24.27 25.33

 
 The basic frequency, as seen in Eq.(3.3), is defined by the following formula 
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 If we take into account that γ (0) = 18.7 and γ (0.5) = 25.3, it is concluded that the increase of  
ν - from 0 to 0.5 - is accompanied by an increase of the basic frequency coefficient γ by about 35% of the disc. 
 In order to compare the frequency of the vibrations of a plate made of different materials it is 
necessary to use the formula (3.6). If, e.g., the first material is aluminum (I), and the second - tin (II) then 
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where formula (3.6) gives a result below 
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4. Calculation results and summary 
 
 If ν increases, the coefficient of γ (ν) for the disc (m = -1) also monotonically increases (Fig.2), so γI 
/ γII <1. As for the diaphragm-type plate (m> 0), the opposite effect of v is observed, and hence ν γI / γII> 1 
and this means that the coefficient ν increases the frequency rate compared to a plate of constant thickness 
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. In contrast, in the disc- type plate, this ratio decreases as obtained from the solutions, 

and shown in Tab.3. 
 

Table 3.  Values of fundamental frequency ratio for a plate of uniform thickness, diaphragm-type plate and  
a disc made of duralumin (I) or tin (II). 
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 Figure 2 presents an approximation curve of dependency of the basic frequency estimators on 
Poisson's ratio using polynomial  = 0.07042 + 0.8964 + 17.624, Jaroszewicz and Zoryj [14].    
 

 
 

Fig.2. Dependency of estimators of basic frequency coefficients on Poisson's ratio for a disc (m = –1). 
 
 This polynomial can be used in the initial calculation of the coefficient of the basic frequency of the 
transverse vibration of circular, disc-type plates, where m = -1 and  = 0  0.5. Similarly, it is possible to 
determine other values for the fundamental frequency  of other values of m <0. It can be noted here that the 
basic frequency of the disc (m = -1) may be greater than the frequency of the plate with constant thickness 
(m = 0), made of the same material from 83% for ν = 0 to 247% for ν = 0.5, respectively. 
 
Conclusions 
 
 In this paper, the Cauchy function has been employed to solve natural vibration of hyperbolic 
circular thin plates with a clamped edge. The limited solutions of Euler equation expanded in the power 
series make it possible to obtain characteristic equations of circular plates rapidly convergent to exact 
eigenvalues. The characteristic equations were obtained for the value of parameter m=-1 and different values 
of Poisson's ratio. The influence of the values of Poisson's ratio on the dimensionless eigenvalue was 
presented. The numerical results of the investigation can be used to validate the accuracy of other numerical 
methods as benchmark values. The calculations are made with the help of Mathematica v10. 
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