PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic stability of a cracked pipe conveying fluid and resting on a Pasternak elastic foundation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pipeline transport is used worldwide in many sectors of the economy. Its main advantages are continuity of transport, large transportation volumes, small energy consumption, safety, reliability and high environmental benefits. However, the safety problems of pipes attract much interest in science and industry. This paper deals with a cracked pipe with a static scheme of a simply supported beam. It rests along its entire length on a Pasternak elastic foundation. The flowing fluid is considered non-compressible and heavy. The Galerkin method is employed to approach the problem numerically. Conclusions are drawn based on the influence of the crack and the parameters of the Pasternak elastic foundation on the critical flow velocity of the fluid.
Rocznik
Tom
Strony
103--113
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Faculty of Hydraulic Engineering, University of Architecture, Civil engineering and Geodesy, Hristo Smirnenski 1 Street, 1046 Sofia, Bulgaria
  • Faculty of Hydraulic Engineering, University of Architecture, Civil engineering and Geodesy, Hristo Smirnenski 1 Street, 1046 Sofia, Bulgaria
Bibliografia
  • 1. Challapilla K., H. Simha. 2007. „Critical velocity of fluid-conveying pipes resting on two-parameter foundation”. Journal of Sound and Vibration 302(1-2): 387-397. DOI: 10.1016/jsv.2006.11.007 .
  • 2. Chen B., M. Deng, Z. Yin. 2013. „Calculation Analysis of Natural Frequency of Pipe Conveying Fluid Resting on Pasternak Foundation”. Advanced Materials Research 668: 589-592. DOI: 10.4028/www.scientific.net/AMR.668.589.
  • 3. Cheng M., Y. Lu. 2006. „Structural stability of carbon nanotubes using molecular dynamics and finite-difference time-domain methods”. IEEE Transactions on Magnetics 42(4): 891-894. DOI: 10.1109/tmag. 2006.871.371.
  • 4. Doare O., E. de Langre. 2002. „Local and global instability of fluid conveying pipes on elastic foundations”. Journal of Fluids and Structures 16(1): 1-14. DOI: 10.1006/jfls.2001.0405.
  • 5. Elishakoff I., N. Impollonia. 2001. „Does a partial elastic foundation increase the flutter velocity of a pipe conveying fluid”. Journal of Applied Mechanics 68: 206-212. DOI: 10.1115/1.1354206.
  • 6. Eryılmaz A., M. Atay, S. Coşkun, M. Başbük. 2013. „Buckling of Euler Columns with a Continuous Elastic Restraing via Homotopy Analysis Method”. Journal of Applied Mathematics 2013: 1-8. DOI: 10.1155/2013/341063.
  • 7. Faal R., D. Derakhshan. 2011. „Flow-Induced Vibration of Pipeline on Elastic Support”. Procedia Engineering 14: 2986-2993. ISSN: 1679-7817. DOI: 10.1016/j.proeng.2011.07.376.
  • 8. Ghiyam E., V. Maleki, M. Rezaee. 2016. „Effect of open crack on vibration behaviour of a fluid-conveying pipe embedded in a visco-elastic medium”. Latin American Journal of Solids and Structures 13: 136-154. ISSN: 1679-7817. DOI: 10.1590/1679-78251986.
  • 9. Ibrahim R. 2010. „Overview of Mechanics of Pipes Conveying Fluids – Part I: Fundamental Studies”. Journal of Pressure Vessel Technology 132(3): 034001. DOI: 10.1115/1.4001271.
  • 10. Jweeg M., T. Nayeesh. 2016. „Determination of Critical Buckling Velocities of Pipes Conveying Fluid Rested on Different Suports Conditions”. International Journal of Computer Applications 134(10): 34-42. DOI: 10.5120/ijca.2016908204.
  • 11. Lolov D., S. Lilkova-Markova. 2018. „Dynamic stability of double-walled carbon nanotubes”. Journal of the Serbian Society for Computational Mechanics 12(1): 1-8. DOI: 10.24874/jsscm.2018.12.01.01.
  • 12. Lolov D., S. Lilkova-Markova. 2021. „Dynamic stability of a fluid-immersed pipe conveying fluid and resting on a damped Winkler elastic foundation”. Proceedings of XI International Conference Industrial Engineering and Environment Protection 2021 (IIZS 2021): 49-55. October 7-8th, 2021, Zrenjanin, Serbia. DOI: 10.1115/1.4024409.
  • 13. Marzani A., E. Mazzotti, P. Viola, I. Elishakoff. 2012. „ FEM Formulation for Dynamic Instability of Fluid-Conveying Pipe on Nonuniform Elastic Foundation”. Mechanics Based Design of Structures and Machines 40(1): 83-95. DOI: 10.1080/15397734.2011.618443.
  • 14. Orhan S. 2007. „Analysis of free and forced vibration of a cracked cantilever beam”. NDT&E International 40: 443-450. ISSN: 0963-8695. DOI: 10.1016/j.ndteint.2007.01.010.
  • 15. Paidoussis M., N. Issid. 1974. „Dynamic stability of pipes conveying fluid”. Journal of Sound and Vibration 33(3): 267-284. ISSN: 1679-7817. DOI: 10.1016/s0022-460x(74)80002-7.
  • 16. Paidoussis M. 1998. Fluid-structure interactions: Slender Structures and Axial Flow. Academic Press, London. ISBN: 978-0-12-397312-2.
  • 17. Ritto T., C. Soize, F. Rochinha, R. Sampaio. 2014. „Dynamic stability of pipes conveying fluid with an uncertain computational model”. Journal of Fluids and Structures 49: 412-426. ISSN: 1679-7817. DOI: 10.1016/jfluidstructs.2014.05.003.
  • 18. Shiwen L., H. Ronghui, Y. Zhao, W. Jiarui, C. Shuang, L. Jianyong, L. Yi. 2022. „Numerical Simulation Research on Flow-Induced Vibration Characteristics of Fluid-Conveying Pipe Network”. Nuclear power Engineering 43(1): 187-191. DOI: 10.13832/j.jnpe.2022.01.0187.
  • 19. Siba M., W. Wahmahmood, M. Zakinuaw, R. Rasani, M. Nassir. 2016. „Flow-induced vibrations in pipes: challengess and solutions – a review”. Journal of Engineering Science and Technology 11(3): 362-382. ISSN: 1679-7817. DOI: 10.1016/s0022-460x(74)80002-7.
  • 20. Son I., H.Yoon. 2008. „Dynamic behaviour of forced vibration of elastically restrained pipe conveying fluid with crack”. Transactions of the Corean Society for Noise and Vibration Engineering 18(2): 177-184. DOI: 10.5050/KSNVN.2008.18.2.177.
  • 21. Son I., S. Lee, J. Lee, D. Bae. 2013. „Dynamic behaviour of forced vibration of elastically restrained pipe conveying fluid with crack and concentrated mass”. 9-th International Conference on Fracture & Strenght of Solids. Jeju, Korea.
  • 22. Al-Waily M., M. Al-Baghdadi, R. Al-Khayat. 2017. „Flow Velocity and Crack Angle Effect on Vibration and Flow Characterization for Pipe Induced Vibration”. International Journal of Mechanical & Mechatronics Engineering 17(5): 19-27. ISSN: 1679-7817. DOI: 10.1016/s0022-460x(74)80002-7.
  • 23. Whitby M., N. Quirke. 2007. „Fluid flow in carbon nanotubes and nanopipes”. Nature Nanotechnology 2: 87-94. DOI: 10.1038/nnano.2006.175.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc4ad38a-61e5-4be6-9ff4-87bc51f79f06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.