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DYNAMIC STABILITY OF A CRACKED PIPE CONVEYING FLUID 

AND RESTING ON A PASTERNAK ELASTIC FOUNDATION 
 

Summary. Pipeline transport is used worldwide in many sectors of the economy. 

Its main advantages are continuity of transport, large transportation volumes, small 

energy consumption, safety, reliability and high environmental benefits. However, 

the safety problems of pipes attract much interest in science and industry. This 

paper deals with a cracked pipe with a static scheme of a simply supported beam. 

It rests along its entire length on a Pasternak elastic foundation. The flowing fluid 

is considered non-compressible and heavy. The Galerkin method is employed to 

approach the problem numerically. Conclusions are drawn based on the influence 

of the crack and the parameters of the Pasternak elastic foundation on the critical 

flow velocity of the fluid. 
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1. INTRODUCTION 

 

Pipelines conveying fluid have many engineering applications. They are widely used in the 

petroleum industry for the transportation of oil and gas. Another established use of them is in 

the transport of water. They also find applications in nuclear engineering, aviation and 

aerospace.  

Nanoscale tubes find applications in nanophysics, nanobiology and nanomechanics as 

nanofluidic devices in nanocontainers for gas storage and nanopipes conveying fluid. The 

experiments at the nanoscale are difficult and expensive. That is why the continuum elastic 

models have been used to study the fluid-structure interaction. The carbon nanotubes are 

considered with Euler- and Timoshenko-beam models. 

Tubes conveying fluid may also be found in pulmonary and urinary systems and 

haemodynamics. 

The interaction of a tube and the fluid flowing in it has been the subject of much research. 

The flow of the fluid in the tube causes oscillations in it. The dynamic characteristics of the 

pipe’s oscillations depend on the velocity and the mass of the conveyed fluid. The system is 

stable for flow velocities that are less than a certain value called critical flow velocity. The 

research on the dynamic stability of pipes conveying fluid is branched into two directions: a) 

dynamic stability of pipes with a rectilinear axis, and b) dynamic stability of curved pipes. 

The most common methods used for the dynamic analysis of pipes conveying fluid are the 

transfer matrix method (TMM) and the generalized differential quadrature method (GDQM). 

Both methods have a significant advantage over the finite element method (FEM). The 

conventional FEM can be very time-consuming when it comes to the investigation of a pipeline 

with a high number of spans. The order of the overall property matrices for the whole multi-

span pipeline increases with the number of spans. This is unlike the TMM, in which the order 

of the overall transfer matrix is independent of the number of spans and is kept unchanged. 

The GDQM approximates a derivative of a function in the partial differential equation of the 

lateral vibration of the pipe at any discrete point as a weighted sum of the function values at all 

discrete values at the domain. The main advantage of this method is its high convergence with 

a few grid points. 

Pipelines often rest with their entire length or with part of it on an elastic medium. The first 

suggested model of that medium is the Winkler elastic foundation. Although it has some 

shortcomings, it is still being widely used in civil engineering since its introduction in 1867. 

The Winkler model of the elastic medium consists of mutually independent vertical linear 

springs. 

In 1954, a refined model of the elastic medium was introduced by Pasternak. He introduced 

shear interaction between adjacent linear springs in the Winkler model. The Pasternak 

foundation is a two-parameter model. The values of the parameters for practical application are 

the subject of much research in the field of geotechnical mechanics. 

Cracks are the most encountered damage in the structures. They reduce the stiffness of the 

structural element, causing a decrease in its natural frequencies and a change in the mode 

shapes. In pipes conveying fluid, cracks lead to a decrease in the critical velocity of the fluid. 

The cracks could be hazardous for the system. They might lead to loss of stability if the reduced 

critical velocity of the transported fluid, due to the crack, is exceeded. This is why crack 

detection is a topic of great interest in scientific research. Some of the studies for crack detection 

deal with the changes in the natural frequencies and eigenforms, and others with dynamic 

responses to harmonic loads. 
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The book [16] deals with the dynamics of slender cylindrical bodies in contact with axial 

flow. It not only covers the fundamentals of the problem but also solves some examples that 

have direct applications in engineering and physiological systems. 

M. Paidoussis and N. Issid in [15] investigated the dynamic stability of pipes with internal 

flow. They considered clamped-clamped and pinned-pinned pipes. 

M. Siba et al. [19] reviewed studies of the oscillations of a tube conveying fluid. The need 

for more experiments in this area is justified. 

L. Shiwen et al. [18] studied the flow-induced vibration characteristics of a pipeline system. 

Fluid-structure interaction numerical simulation is conducted for a typical fluid-conveying pipe 

network with the help of software. 

Bing Chen et al. [2] used Galerkin’s method and the complex mode method to find the 

natural frequencies of a pinned-pinned pipe conveying fluid and lying on a Pasternak 

foundation.  

Eslami Ghiyam et al. [8] investigated the vibrations of a pipe with a crack and embedded in 

a visco-elastic medium. 

Son In-Soo et al. [21] investigated vibrations of a cracked pipe conveying fluid with 

concentrated mass and supported on elastic supports.  

In this paper, a fluid-conducting tube resting on a Pasternak elastic foundation is 

investigated. The results obtained reflect the dependence of the critical fluid velocity on the 

parameters of the Pasternak elastic foundation. They also show the effect of an open crack on 

the critical velocity of the fluid. 

This paper is structured as follows. First, the model of the pipe and the governing differential 

equation of its transverse vibration is presented. The Galerkin method is employed to approach 

the solution to the problem. It is shown how to obtain the characteristic equation of the problem. 

Based on its roots, conclusions could be drawn about the stability of the system. Second, it is 

shown how to model the crack with the help of Castigliano’s theorem. Finally, the obtained 

results from the numerical solution are presented, and several important conclusions are 

summarized.  

 

 

2. PROBLEM FORMULATION 
 

This paper uses the Euler-Bernoulli beam theory to investigate the dynamic stability of a 

pipe of length l , conveying fluid and resting on a Pasternak elastic foundation. The pipe, shown 

in Figure 1, is hinged at both ends and is supposed to have an open edge crack, which is 

modelled as a rotational spring with a lumped stiffness rsk [14]. The position of the crack is 

shown in Figure 1 through the axial coordinate cx . 

The pipe is divided into two segments. The first segment is the left-hand side of the crack, 

and the second – the right-hand side of the crack. 

The transverse vibration of a straight pipe conveying inviscid fluid and lying on a Pasternak 

elastic foundation is governed by the following differential equation: 
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where t  is the time,  txw ,  is the lateral displacement of the pipe axis, x  is the coordinate 

along the axis, EI  is the rigidity of the pipe. The mass of the pipe per unit length is denoted by 

pm  and the mass of the fluid per unit length of the pipe by fm . V  is the flow velocity of the 

fluid in the pipe. While k  and rk , are the parameters of the Pasternak elastic foundation. 

 

 
 

Fig. 1. Static scheme and cross-section of the investigated pipe 

 

For simplicity, the following dimensionless parameters are introduced: 
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The dimensionless equations for transverse vibration in the two segments of the pipe are: 

 

   022  nn
I
n

II
nr

IV
n kuku   , 2,1n  (3) 

 

In (3) and in the sequel, primes denote derivatives with respect to   and dots with respect 

to the dimensionless time  . 

The spectral Galerkin method is applied to approximate the solution of the differential 

equation (3). The solution for each segment of the pipe is sought in the following form: 
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where: 

 iq  - are unknown functions; 

 inW  - are basic functions that satisfy the boundary conditions of the pipe. Such functions 

describe the i-th mode of vibration of a beam with the same static scheme as the pipe.  
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The boundary conditions of the cracked simply supported beam, shown in Figure 1 are: 

For the left end of the beam: 
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For the right end of the beam: 
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For the cracked section of the pipe [21]: 
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Inserting equation (4) in equation (3), yields: 

 

 0 qKqCqM  , (8) 

 

where the elements of the matrices in equation (8) are: 
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The general solution of the system (8) is expressed through the roots of the equation: 

 

 0det X  (12) 

 

The elements of the matrix X  are given by: 

 

 ijijijij KCMX  2
 (13) 

 

Based on the obtained roots could be concluded the stability of the system. The system is 

stable if the real part of all the roots of the characteristic equation (13) is negative.  

The roots depend on all the parameters of the system. If all of them are fixed except the 

velocity of the conveyed fluid V , one could obtain the corresponding critical velocity. 
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3. CRACK MODELLING 

 

It is considered that the bending vibrations of the Euler-Bernoulli beam is in the plane yx  

(Figure 1), which is also a plane of symmetry for the cross-section. The crack is assumed to be 

open. Castigliano’s theorem is used to obtain the local flexibility in the presence of the crack 

[8]: 
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where E  and   are Young’s module and Poisson’s ratio, respectively. IK  is the stress intensity 

factor of bending. a  and b  are the crack dimensions as shown in Figure 1. M  is the bending 

moment. 
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where  outin RRR  5,0 , pt and c  are the thickness of the pipe and the half central angle of 

the crack, respectively (Figure 1).  cF   is calculated from the following formula [21]: 
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The equivalent rotational spring stiffness: 
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4. RESULTS AND DISCUSSION 

 

Numerical studies have been carried out for the system in Figure 1. 

The geometric and material characteristics of the pipe are: the inner and the outer radii of 

the cross-section of the pipes - 𝑅𝑖𝑛 = 0,012 𝑚 and 𝑅𝑜𝑢𝑡 = 0,014 𝑚, Young’s modulus 
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GPaE 210 , the density of the material of the pipe 3/7800 mkg . The density of the 

flowing fluid is 3/1000 mkg . The dimensions of the crack are mma 1 , mmb 5 .  

The finite element method was used to obtain the basic functions  inW . The 

eigenfunctions for the pipe with stationary fluid ( 0V ) are used as the basic functions in this 

paper. The first 10 modes were used in the calculations. 

At first, the position of the crack is fixed with the coordinate 33,0/ lxc  at the top edge of 

the beam. The aim is to investigate the influence of the parameters of the Pasternak elastic 

foundation on the stability of the system. When the parameter 0rk  and the parameter 0k

, the foundation is known as Winkler elastic foundation. When 0k  and 0rk , the 

foundation is known as the rotational elastic foundation. The results obtained in this work allow 

to investigate the influence of the Winkler elastic foundation and rotational elastic foundation 

on the stability of the system.  

Based on the obtained roots of the characteristic equation (12) could be drawn conclusions 

about the stability of the system. The system is stable if the real part of all the roots is negative. 

If one or more roots have positive real parts, then the system is unstable. When one or more 

roots of the characteristic equation have real parts equal to zero, the system is at the edge of 

loss of stability, the corresponding fluid velocity is the critical fluid velocity. The roots depend 

on all the parameters of the system. If all of them are fixed, except the velocity of the conveyed 

fluid V , one could obtain the corresponding critical velocity. 

The obtained results for a cracked pipe are compared with the results of an undamaged pipe. 

For the pipe in Figure 1 are obtained the critical velocities for different values of the 

parameters of the Pasternak elastic foundation. The results shown in Figure 2 are calculated for 

a crack fixed with a coordinate 33,0/ lxc . 

The obtained results show that the Pasternak foundation has a stabilizing effect on the pipe 

- by increasing the parameters of the foundation, the critical velocity increases. The crack has 

a destabilizing effect on the system, leading to decreasing in the critical velocity. 

For the Winkler elastic foundation ( 0rk ), the results show the stabilizing effect of the 

foundation on the system. For both cracked and undamaged pipes, increasing the rigidity of the 

foundation leads to an increase in the critical velocity. 

The same dependence between the rigidity of the rotational foundation and the critical 

velocity of the fluid is observed.  

The second part of the survey investigated the influence of the position of the crack on the 

stability of the system. It considered not only the position of the crack along the length of the 

beam but also if the crack is on the top or bottom edge of the pipe. The results are shown in 

Figure 3. 

When the coordinate of the crack lxc /  increases, the critical flow velocity decreases. The 

system is less stable when the crack is in the middle cross-section of the pipe 5,0/ lxc . 

There is a slight difference in the critical velocities when the position of the crack is on the 

top and bottom edge of the pipe. For all investigated coordinates of the crack lxc / , the position 

of the crack at the top has a destabilizing effect on the system. 
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Fig. 2. Critical velocity versus the rigidity of the Pasternak elastic foundation 

 

 

 
 

Fig. 3. Critical velocity versus the position of the crack ( 2/200 mkNk  ; mkNmkr /100 ) 

 

 

5. CONCLUSION 

 

The classical Winkler foundation is often used as a model in geotechnical analyses. It states 

that the deflection at any point at the surface of an elastic medium is proportional to the load 

applied at the point and does not depend on the applied loads at other points of the surface, and 

that is its major shortcoming. To overcome this, the Pasternak model is introduced. It is an 

improved two-parameter model of the elastic medium. 
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Cracks are the most encountered damage in the structures. When a structure is cracked, its 

stiffness is reduced, with a consequent reduction in the natural frequencies and a change in the 

eigenforms. 

This paper investigated the influence of the parameters of the Pasternak elastic foundation 

on the stability of a cracked pipe conveying fluid. 

The pipe is modelled as two segments connected by a rotational elastic spring at the cracked 

cross-section. Castigliano’s theorem is employed to calculate the stiffness of the spring. The 

spring stiffness depends on the geometry of the cross-section of the pipe and the severity of the 

crack. 

The results obtained in this study could be summarized as follows: 

1. The Pasternak foundation has a stabilizing effect on the system. This means that the fluid 

could flow through the pipe at a higher velocity without causing a loss of stability in the 

system. 

2. When the parameter of the Pasternak elastic foundation mkNmkr /0 , the foundation 

is known as a Winkler elastic foundation. The obtained results show that the Winkler 

elastic foundation also has a stabilizing effect on the system. 

3. In the case when the pipe rests on the rotational elastic foundation (Pasternak elastic 

foundation with 0k ) – the increasing of the rigidity of the foundation leads to an 

increase in the critical velocity. 

4. A pipe resting on Pasternak elastic foundation has higher critical velocity compared with 

the same pipe but resting on Winkler elastic foundation when the coefficient k  of both 

foundations is equal.  

5. The position of the crack affects the stability of the system. If the crack severity remains 

unchanged, the critical velocity of the fluid is higher when the crack is located at the 

bottom edge of the pipe than when the crack is at the upper edge of the pipe. Also, the 

position of the crack along the length of the pipe affects the stability of the system. The 

closer the crack is to the middle of the span, the more unstable the system becomes. 

 

It is worth mentioning that the damping of the Pasternak elastic foundation also affects the 

stability of the system; however, this effect was not considered in this paper. 

The results obtained contribute to the safety of pipes conveying fluid. To avoid damages, the 

operator of the pipe should not allow higher transportation velocities than the critical velocity 

of the system. As the critical velocity depends on many parameters of the system, among which 

is the severity and position of the crack, the operator of the pipe should perform strict crack 

detection tests, then based on the results, correct the velocity of the fluid to the damaged system, 

not to lose stability. 
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