PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The investigation of cathode layer of Molten Carbonate Fuel Cell manufactured by using printing techniques

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an investigation into the three cathode layers for the Molten Carbonate Fuel Cell that were obtained by using printing techniques on various surfaces. The main differences during the manufacturing process were the substrates used when printing the layers: glass and two different sorts of paper. The cathodes were investigated at the theoretical and experimental level. To identify the influence of the substrate used we built a mathematical model of the fuel cell, in which the influence is expressed by the conductivity of the layer. The paper demonstrates the possibility of using printing techniques to manufacture Molten Carbonate Fuel Cell layers.
Rocznik
Strony
82--91
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
  • Arkuszowa Drukarnia Offsetowa Lmtd., 40 Traugutta Street, 05-825 Grodzisk Maz., Poland
  • Warsaw University of Technology, Faculty of Material Engineering, 141 Wołoska Street, 02-507 Warsaw, Poland
  • CIM-mes Projekt Lmtd., 125/127 Jerozolimskie Street, 02-017 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Material Engineering, 141 Wołoska Street, 02-507 Warsaw, Poland
  • Arkuszowa Drukarnia Offsetowa Lmtd., 40 Traugutta Street, 05-825 Grodzisk Maz., Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Material Engineering, 141 Wołoska Street, 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
Bibliografia
  • [1] R. Roshandel, F. Golzar, M. Astaneh, Technical economic and environmental optimization of combined heat and power systems based on solid oxide fuel cell for a greenhouse case study, Energy Conversion and Management 164 (2018) 144–156.
  • [2] J. Yan, F. Sun, S. Chou, U. Desideri, H. Li, P. Campana, R. Xiong, Transformative innovations for a sustainable future – Part III, Applied Energy 227 (2018) 1–6.
  • [3] J. Kotowicz, Ł. Bartela, K. Dubiel-Jurga´s, Analysis of Energy Storage System with Distributed Hydrogen Production and Gas Turbine, Archives of Thermodynamics 38 (4) (2017) 65–87.
  • [4] J. G. G. Clúa, R. J. Mantz, H. D. Battista, Optimal sizing of a gridassisted wind-hydrogen system, Energy Conversion and Management 166 (2018) 402–408.
  • [5] M. Le'sko, W. Bujalski, Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage, Archives of Thermodynamics 38 (4) (2017) 139–163.
  • [6] R. Bartnik, Z. Buryn, A. Hnydiuk-Stefan, A. Juszczak, Methodology and a Continuous Time Mathematical Model for Selecting the Optimum Capacity of a Heat Accumulator Integrated with a CHP Plant, Energies 11 (5) (2018) 1240.
  • [7] L. Szablowski, P. Krawczyk, K. Badyda, S. Karellas, E. Kakaras,W. Bujalski, Energy and exergy analysis of adiabatic compressed air energy storage system, Energy 138 (2017) 12–18.
  • [8] A. Chmielewski, P. Piorkowski, K. Bogdzinski, P. Szulim, R. Guminski, Test bench and model research of hybrid energy storage, JOURNAL OF POWER TECHNOLOGIES 97 (5) (2017) 406–415.
  • [9] J. Yu, J. Fu, F. Guo, Y. Xie, Automatic testing system to evaluate the energy efficiency of electric storage water heaters, Measurement and Control 51 (7-8) (2018) 223–234.
  • [10] S. Fukuzumi, Y.-M. Lee, W. Nam, Fuel Production from Seawater and Fuel Cells Using Seawater, ChemSusChem 10 (22) (2017) 4264–4276.
  • [11] Y. Chen, F. Mojica, G. Li, P.-Y. A. Chuang, Experimental study and analytical modeling of an alkaline water electrolysis cell, International Journal of Energy Research 41 (14) (2017) 2365–2373.
  • [12] B. Hu, A. N. Aphale, C. Liang, S. J. Heo, M. A. Uddin, P. Singh, Carbon Tolerant Double Site Doped Perovskite Cathodes for High- Temperature Electrolysis Cells, ECS Transactions 78 (1) (2017) 3257–3265.
  • [13] S. Lepszy, T. Chmielniak, P. Monka, Storage system for electricity obtained from wind power plants using underground hydrogen reservoir, JOURNAL OF POWER TECHNOLOGIES 97 (1) (2017) 61–68.
  • [14] C. Seibel, J.-W. Kuhlmann, Dynamic Water Electrolysis in Cross-Sectoral Processes, Chemie Ingenieur Technik 90 (10) (2018) 1430–1436.
  • [15] L. Barelli, G. Bidini, G. Cinti, Air variation in SOE: Stack experimental study, International Journal of Hydrogen Energy 43 (26) (2018) 11655–11662.
  • [16] A. Z. Senseni, F. Meshkani, S. M. S. Fattahi, M. Rezaei, A theoretical and experimental study of glycerol steam reforming over Rh/MgAl 2 O 4 catalysts, Energy Conversion and Management 154 (2017) 127–137.
  • [17] Q. Zhuang, P. Geddis, A. Runstedtler, B. Clements, An integrated natural gas power cycle using hydrogen and carbon fuel cells, Fuel 209 (2017) 76–84.
  • [18] G. Leonzio, State of art and perspectives about the production of methanol dimethyl ether and syngas by carbon dioxide hydrogenation, Journal of CO2 Utilization 27 (2018) 326–354.
  • [19] F. B. Juangsa, L. A. Prananto, Z. Mufrodi, A. Budiman, T. Oda, M. Aziz, Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation, Applied Energy 226 (2018) 31–38.
  • [20] V. Subotić, B. Stoeckl, V. Lawlor, J. Strasser, H. Schroettner, C. Hochenauer, Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches, Applied Energy 222 (2018) 748– 761.
  • [21] A. H. Davoodi, M. R. Pishvaie, Plant-Wide Control of an Integrated Molten Carbonate Fuel Cell Plant, Journal of Electrochemical Energy Conversion and Storage 15 (2) (2018) 021005.
  • [22] M. A. Azizi, J. Brouwer, Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis transient operation, controls and optimization, Applied Energy 215 (2018) 237–289.
  • [23] M. Recalde, T. Woudstra, P. Aravind, Renewed sanitation technology: A highly efficient faecal-sludge gasification–solid oxide fuel cell power plant, Applied Energy 222 (2018) 515–529.
  • [24] J. Badur, M. Lema´ nski, T. Kowalczyk, P. Ziółkowski, S. Kornet, Zerodimensional robust model of an SOFC with internal reforming for hybrid energy cycles, Energy 158 (2018) 128–138.
  • [25] P. Jienkulsawad, D. Saebea, Y. Patcharavorachot, S. Kheawhom, A. Arpornwichanop, Analysis of a solid oxide fuel cell and a molten carbonate fuel cell integrated system with different configurations, International Journal of Hydrogen Energy 43 (2) (2018) 932–942.
  • [26] I. Baikov, O. Smorodova, S. Kitaev, I. Yerilin, Temperature influence on internal reforming and methane direct oxidation in solid oxide fuel cells, Nanotechnologies in Construction: A Scientific Internet-Journal 10 (4) (2018) 120–137.
  • [27] M. Dillig, T. Plankenbühler, J. Karl, Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming, Journal of Power Sources 373 (2018) 139–149.
  • [28] S. Campanella, M. Bracconi, A. Donazzi, A fast regression model for the interpretation of electrochemical impedance spectra of Intermediate Temperature Solid Oxide Fuel Cells, Journal of Electroanalytical Chemistry 823 (2018) 697–712.
  • [29] M. Wu, H. Zhang, T. Liao, Performance assessment of an integrated molten carbonate fuel cell-thermoelectric devices hybrid system for combined power and cooling purposes, International Journal of Hydrogen Energy 42 (51) (2017) 30156–30165.
  • [30] W. M. Budzianowski, Assessment of Thermodynamic Efficiency of Carbon Dioxide Separation in Capture Plants by Using Gas–Liquid Absorption, in: Green Energy and Technology, Springer International Publishing, 2016, pp. 13–26.
  • [31] D. Bonaventura, R. Chacartegui, J. Valverde, J. Becerra, C. Ortiz, J. Lizana, Dry carbonate process for CO 2 capture and storage: Integration with solar thermal power, Renewable and Sustainable Energy Reviews 82 (2018) 1796–1812.
  • [32] R. Carapellucci, R. Cipollone, D. D. Battista, Modeling and characterization of molten carbonate fuel cell for electricity generation and carbon dioxide capture, Energy Procedia 126 (2017) 477–484.
  • [33] S. K. Das, Towards enhancement of carbon capture by Molten Carbonate Fuel Cell through controlled thermodiffusion, International Journal of Heat and Mass Transfer 127 (2018) 296–302.
  • [34] Q. Zhuang, P. Geddis, A. Runstedtler, B. Clements, A power cycle of natural gas decarbonization and dual fuel cells with inherent 100% carbon capture, International Journal of Hydrogen Energy 43 (39) (2018) 18444–18451.
  • [35] J. P. Perez-Trujillo, F. Elizalde-Blancas, M. D. Pietra, S. J. McPhail, A numerical and experimental comparison of a single reversible molten carbonate cell operating in fuel cell mode and electrolysis mode, Applied Energy 226 (2018) 1037–1055.
  • [36] P. Fragiacomo, G. D. Lorenzo, O. Corigliano, Performance Analysis of an Intermediate Temperature Solid Oxide Electrolyzer Test Bench under a CO2-H2O Feed Stream, Energies 11 (9) (2018) 2276.
  • [37] and, Dynamic Analysis of Load Operations of Two-Stage SOFC Stacks Power Generation System, Energies 10 (12) (2017) 2103.
  • [38] J. Kupecki, K. Motyliński, M. Skrzypkiewicz, M. Wierzbicki, Y. Naumovich, Preliminary Electrochemical Characterization of Anode Supported Solid Oxide Cell (AS-SOC) Produced in the Institute of Power Engineering Operated in Electrolysis Mode (SOEC), Archives of Thermodynamics 38 (4) (2017) 53–63.
  • [39] Y. Zheng, Y. Luo, Y. Shi, N. Cai, Dynamic Processes of Mode Switching in Reversible Solid Oxide Fuel Cells, Journal of Energy Engineering 143 (6) (2017) 04017057.
  • [40] O. Siddiqui, I. Dincer, Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle, Journal of Power Sources 370 (2017) 138–154.
  • [41] N. Danilov, A. Tarutin, J. Lyagaeva, E. Pikalova, A. Murashkina, D. Medvedev, M. Patrakeev, A. Demin, Affinity of YBaCo 4 O 7+_ - based layered cobaltites with protonic conductors of cerate-zirconate family, Ceramics International 43 (17) (2017) 15418–15423.
  • [42] M. L. Ferrari, A. Sorce, A. F. Massardo, Hardware-in-the-Loop Operations With an Emulator Rig for SOFC Hybrid Systems, in: Volume 3: Coal Biomass and Alternative Fuels, Cycle Innovations, Electric Power, Industrial and Cogeneration Applications, Organic Rankine Cycle Power Systems, ASME, 2017.
  • [43] K. Motylinski, Y. Naumovich, Numerical model for evaluation of the effects of carbon deposition on the performance of 1 kW SOFC stack – a proposal, E3S Web of Conferences 14 (2017) 01043.
  • [44] R. Ma, C. Liu, E. Breaz, P. Briois, F. Gao, Numerical stiffness study of multi-physical solid oxide fuel cell model for real-time simulation applications, Applied Energy 226 (2018) 570–581.
  • [45] Z. Ye, X. Zhang, W. Li, G. Su, J. Chen, Optimum operation states and parametric selection criteria of a high temperature fuel cell thermoradiative cell system, Energy Conversion and Management 173 (2018) 470–475.
  • [46] G. Accardo, D. Frattini, S. P. Yoon, H. C. Ham, S.W. Nam, Performance and properties of anodes reinforced with metal oxide nanoparticles for molten carbonate fuel cells, Journal of Power Sources 370 (2017) 52–60.
  • [47] M. E. Chelmehsara, J. Mahmoudimehr, Techno-economic comparison of anode-supported cathode-supported, and electrolyte-supported SOFCs, International Journal of Hydrogen Energy 43 (32) (2018) 15521–15530.
  • [48] T. A. Prokop, K. Berent, H. Iwai, J. S. Szmyd, G. Brus, A threedimensional heterogeneity analysis of electrochemical energy conversion in SOFC anodes using electron nanotomography and mathematical modeling, International Journal of Hydrogen Energy 43 (21) (2018) 10016–10030.
  • [49] A. M. Abdalla, S. Hossain, A. T. Azad, P. M. I. Petra, F. Begum, S. G. Eriksson, A. K. Azad, Nanomaterials for solid oxide fuel cells: A review, Renewable and Sustainable Energy Reviews 82 (2018) 353–368.
  • [50] K. Dzierzgowski, S. Wachowski, W. Gojtowska, I. Lewandowska, P. Jasiński, M. Gazda, A. Mielewczyk-Gryń, Praseodymium substituted lanthanum orthoniobate: Electrical and structural properties, Ceramics International 44 (7) (2018) 8210–8215.
  • [51] L. J. M. J. Blomen, M. N. Mugerwa (Eds.), Fuel Cell Systems, Springer US, 1993.
  • [52] F. RodrÍguez, P. Sebastian, O. Solorza, R. PÉrez, Mo–Ru–W chalcogenide electrodes prepared by chemical synthesis and screen printing for fuel cell applications, International Journal of Hydrogen Energy 23 (11) (1998) 1031–1035.
  • [53] A. D. Taylor, E. Y. Kim, V. P. Humes, J. Kizuka, L. T. Thompson, Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells, Journal of Power Sources 171 (1) (2007) 101–106.
  • [54] N. P. Kulkarni, Design and development of manufacturing methods for manufacturing of PEM fuel cell MEA’s.
  • [55] M. R. Somalu, N. P. Brandon, Rheological Studies of Nickel/Scandia-Stabilized-Zirconia Screen Printing Inks for Solid Oxide Fuel Cell Anode Fabrication, Journal of the American Ceramic Society 95 (4) (2011) 1220–1228.
  • [56] M. Somalu, V. Yufit, I. Shapiro, P. Xiao, N. Brandon, The impact of ink rheology on the properties of screen-printed solid oxide fuel cell anodes, International Journal of Hydrogen Energy 38 (16) (2013) 6789–6801.
  • [57] R. Baumann, A. Willert, F. Siegel, A. Kohl, Method for producing catalyst layers for fuel cells, uS Patent App. 13/322,472 (may 24 2012).
  • [58] W.Wang, S. Chen, J. Li, W.Wang, Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell, International Journal of Hydrogen Energy 40 (13) (2015) 4649–4658.
  • [59] M. R. Somalu, A. Muchtar, W. R. W. Daud, N. P. Brandon, Screenprinting inks for the fabrication of solid oxide fuel cell films: A review, Renewable and Sustainable Energy Reviews 75 (2017) 426–439.
  • [60] A. Jayakumar, S. Singamneni, M. Ramos, A. Al-Jumaily, S. Pethaiah, Manufacturing the Gas Diffusion Layer for PEM Fuel Cell Using a Novel 3D Printing Technique and Critical Assessment of the Challenges Encountered, Materials 10 (7) (2017) 796.
  • [61] A. Nadar, A. M. Banerjee, M. Pai, R. Pai, S. S. Meena, R. Tewari, A. Tripathi, Catalytic properties of dispersed iron oxides Fe2O3/MO2 (M = Zr Ce, Ti and Si) for sulfuric acid decomposition reaction: Role of support, International Journal of Hydrogen Energy 43 (1) (2018) 37–52.
  • [62] E. Arato, E. Audasso, L. Barelli, B. Bosio, G. Discepoli, Kinetic modelling of molten carbonate fuel cells: Effects of cathode water and electrode materials, Journal of Power Sources 330 (2016) 18–27.
  • [63] M. Peksen, Safe heating-up of a full scale SOFC system using 3D multiphysics modelling optimisation, International Journal of Hydrogen Energy 43 (1) (2018) 354–362.
  • [64] E. El-Hay, M. El-Hameed, A. El-Fergany, Steady-state and dynamic models of solid oxide fuel cells based on Satin Bowerbird Optimizer, International Journal of Hydrogen Energy 43 (31) (2018) 14751–14761.
  • [65] J. Milewski, M. Wołowicz, A. Miller, R. Bernat, A reduced order model of Molten Carbonate Fuel Cell: A proposal, International Journal of Hydrogen Energy 38 (26) (2013) 11565–11575.
  • [66] M. Ławryńczuk, Towards Reduced-Order Models of Solid Oxide Fuel Cell, Complexity 2018 (2018) 1–18.
  • [67] S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, Fabrication of bulk heterojunction plastic solar cells by screen printing, Applied Physics Letters 79 (18) (2001) 2996–2998.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc4ad0a4-02da-4b62-9cab-704505c062fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.