PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Silica Aerogel in Composites Protecting Against Thermal Radiation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aerogels are characterized by excellent insulation properties and a good resistance to high and low temperatures. The objective of this study was to investigate the effects of silica aerogel on thermal properties of textile–polymer composites. Aerogel was applied in protective clothing fabric to improve its heat resistance. The composites were produced by coating a fabric made of meta-aramid (polyamide–imide) yarns with a dispersion of polychloroprene latex and synthetic resins or an acrylic–styrene dispersion with aerogel (100–700 μm particle size). The composites were subjected to thermal radiation (20 kW/m2) and their thermal properties were determined by thermogravimetry/derivative thermogravimetry (TG/DTG). Scanning electron microscopy/X-ray energy dispersive spectroscopy (SEM/EDS) was used to characterize the microstructure and study the elemental composition of materials. The thermal conductivity and resistance of composites were measured with an Alambeta apparatus. The tests indicated an increase in resistance to thermal radiation by approximately 15–25%. In TG/DTG analysis, the initial temperature for an unmodified fabric was 423.3°C. After modification, it decreased to 361.8° and 365.3°C for composites with 7 and 14% of aerogel, respectively. SEM images revealed a reduction in aerogel particle size.
Rocznik
Strony
274--287
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Central Institute for Labour Protection-National Research Institute (CIOP-PIB), Czerniakowska 16, 00-701 Warsaw, Poland
  • Łukasiewicz Research Network – Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland
  • Łukasiewicz Research Network – Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland
  • Łukasiewicz Research Network – Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland
Bibliografia
  • [1] Irzmańska, E. (2016). The microclimate in protective fire fighter footwear: foot temperature and air temperature and relative humidity. Autex Research Journal, 16, 75–79.
  • [2] Collin, A., Marchand, A., Kadi, A., Acem, Z., Boulet, P. et al. (2015). Study on visible–IR radiative properties of personal protective clothings for firefighting. Fire Safety Journal, 71, 9–19.
  • [3] Gralewicz, G., Owczarek, G. (2016). Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation. International Journal of Occupational Safety and Ergonomics, 22, 305–309.
  • [4] Peng, L., Su, B., Yu, A., Jiang, X. (2019). Review of clothing for thermal management with advanced materials. Cellulose, 26(11), 6415–6448.
  • [5] Iswar, S., Griffa, M., Kaufmann, R., Beltran, M., Huber, L. et al. (2019). Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: an X-ray tomography study. Microporous and Mesoporous Materials, 278, 289–296.
  • [6] Thapliyal, P. C., Singh K. (2014). Aerogels as promising thermal insulating materials: an overview. Journal of Materials, Article ID 127049, 1–10.
  • [7] Venkataraman, M., Mishra, R., Kotresh, T. M., Militky, J., Jamshaid H. (2016). Aerogels for thermal insulation in high-performance textiles. Textile Progress, 48, 55–118.
  • [8] Bhuiyan, M. R., Wang, L., Shaid, A., Jahan, I., Shanks, R. A. (2020). Silica aerogel-integrated nonwoven protective fabrics for chemical and thermal protection and thermophysiological wear comfort. Journal of Materials Science, 55, 2405–2418.
  • [9] Nosrati, R. H., Berardi, U. (2018). Hygrothermal characteristics of aerogel-enhanced insulating materials under different humidity and temperature. Energy and Buildings, 158, 698–711.
  • [10] Berardi, U., Zaidi S. M. (2019). Characterization of commercial aerogel-enhanced blankets obtained with supercritical drying and of a new ambient pressure drying blanket. Energy and Buildings, 198, 542–552.
  • [11] Fantucci, S., Lorenzati, A., Capozzoli, A., Perino, M. (2019). Analysis of the temperature dependence of the thermal conductivity in vacuum insulation panels. Energy and Buildings, 183, 64–74.
  • [12] Lorenzati, A., Fantucci, S., Capozzoli, A., Perino, M. (2015) VIPs thermal conductivity measurement: test methods, limits uncertainty. Energy Procedia, 78, 418–423.
  • [13] Lakatos, Á., Csarnovics, I. (2019). Influence of thermal annealing on structural properties of silica aerogel super insulation material. Journal of Thermal Analysis and Calorimetry, 1–9. https://doi.org/10.1007/s10973-019-09043-5.
  • [14] Ślosarczyk, A. (2017). Recent advances in research on the synthetic fiber based silica aerogel nanocomposites. Nanomaterials (Basel), 7(2), 44.
  • [15] Greszta, A., Krzemińska, S., Okrasa, M. (2019). Influence of aging factors on the properties of aerogels with different degree of granulation. Fibres and Textiles in Eastern Europe, 4, 50–58.
  • [16] Höffele, S., Russell, S. J., Brook, D. B. (2005). Lightweight nonwoven thermal protection fabrics containing nanostructured materials. Nonwovens Research Academy EDANA (Geneva).
  • [17] Shaid, A., Furgusson, M., Wang, L. (2014). Thermophysiological comfort analysis of aerogel, nanoparticle incorporated fabric for fire fighter’s protective clothing. Chemical and Materials Engineering, 2(2), 37–43.
  • [18] Bhuiyan, M., Wang, L., Shaid, A., Shanks, R., Ding, J. (2019). Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection. Progress in Organic Coatings, 131, 100–110.
  • [19] Yan, J., Choi, H. Y., Hong, Y. K., Jeong, Y. G. (2018). Thermal insulation performance of cotton and pet-based hybrid fabrics impregnated with silica aerogel via a facile dip-dry process. Fibers and Polymers, 4, 854–860.
  • [20] Ackerman, W. C., Field, R. J., Poetter, F. J. H., Scheidemantel, B. (2002). Heat resistant aerogel insulation composite and method for its preparation; aerogel binder composition and method for its preparation. European Patent No. 1469939A1.
  • [21] Cavdar, A. D., Torun, S. B., Ertas, M., Mengeloglu, F. (2018). Ammonium zeolite and ammonium phosphate applied as fire retardants for microcrystalline cellulose filled thermoplastic composites. Fire Safety Journal, 107, 202–209.
  • [22] Chakraborty, S., Rao, A. V., Kothari, V. K., Pisal, A. A. (2019). Radiant heat protective performance of clothing assemblies with flexible aerogel-nomex nonwoven composite as thermal insulation. Indian Journal of Fibre and Textile Research, 44, 396–403.
  • [23] Mandal, S., Annaheim, S., Pitts, T. M., Rossi, R. M. (2018). Studies of the thermal protective performance of fabrics under fire exposure: from small-scale to hexagon tests. Textile Research Journal, 88(20), 2339–2352.
  • [24] Glombikova, V., Komarkova, P. (2014). The efficiency of non-flammable functional underwear. Autex Research Journal, 14, 174–178.
  • [25] Cabot Data Sheet. Enova Aerogel IC 3100. Retrieved March 1, 2018. Web site: http://www.cabotcorp.com/solutions/products-plus/aerogel.
  • [26] EN ISO 5084:1996. Textiles. Determination of thickness of textiles and textile products.•
  • [27] EN 12127:1997. Textile fabrics. Determination of mass per unit area using small samples.
  • [28] EN ISO 6942:2002. Protective clothing. Protection against heat and fire. Method of test: evaluation of materials and material assemblies when exposed to a source of radiant heat.
  • [29] EN ISO 11612:2015. Protective clothing. Clothing to protect against heat and flame. Minimum performance requirements.
  • [30] Matusiak, M. (2006). Investigation of the thermal insulation properties of multilayer textiles. Fibres Textiles in Eastern Europe, 5(59), 98–102.
  • [31] Kraner, Z. P., Mekjavic, I. B., Rijavec, T. (2016). Properties of laminated silica aerogel fibrous matting composites for footwear applications. Textile Research Journal, 86, 1063–1073.
  • [32] Sarawade, P. B., Kim, J. K., Hilonga, A., Viet, Q. D., Jeon, S. J. et al. (2011). Synthesis of sodium silicate-based hydrophilic silica aerogel beads with superior properties. Effect of heat-treatment. Journal of Non-Crystalline Solids, 357, 2156–2162.
  • [33] Krzemińska, S., Greszta, A., Różański, A., Safandowska, M., Okrasa, M. (2019). Effects of heat exposure on the properties and structure of aerogels for protective clothing applications. Microporous and Mesoporous Materials, 285, 43–55.
  • [34] Williams, M. K., Smith, T. M., Roberson, L. B., Yang, F., Nelson, G. L. (2010). Flame retardant effects of aerogel and nanosilica on engineered polymers. In: ICCE-18 International Community of Composite Engineering, Anchorage, United States, Paper no. 20110002953.
  • [35] Li, Z., Cheng, X., Shi, L., He, S., Gong, L. et al. (2016). Flammability and oxidation kinetics of hydrophobic silica aerogels. Journal of Hazard Materials, 320, 350–358.
  • [36] Song, H., Yang, H., Chen, X. (2017). Facile synthesis of highly porous silica aerogel granules and its burning behavior under radiation. Journal of Sol-Gel Science and Technology, 82, 407–416.
  • [37] Oh, K. S., Lee, J. K., Bae, D. S., Son, J. H. (2018). Method for manufacturing low-dust high-insulation aerogel blanket. European Patent No. 3 281 928 A1.
  • [38] Shang, L., Lyu, Y., Han, W. (2019). Microstructure and thermal insulation property of silica composite aerogel. Materials, 12, 1–11.
  • [39] Xiong, X., Yang, T., Mishra, R., Kanai, H., Militky, J. (2017). Thermal and compression characteristics of aerogel-encapsulated textiles. Journal of Industrial Textiles, 47, 1998–2013.
  • [40] Venkataraman, M., Mishra, R., Militky, J. (2017). Comparative analysis of high performance thermal insulation materials. Journal of Textile Engineering and Fashion Technology, 2(3), 401–409.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc459659-f6f1-404f-a3b9-3c58685589d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.