PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Annular rotating disks optimal with respect to mixed creep rupture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optimal shapes in the class of polynomial functions for rotating annular disks with respect to the mixed creep rupture time are found. Two effects leading to damage: diminishing of transversal dimensions and growth of micro-cracks are simultaneously taken into account. The first of them requires the finite strain analysis, the latter is described by Kachanov’s evolution equation. Behaviour of the material is described by nonlinear Norton’s law, generalized for true stresses and logarithmic strains, and the shape change law in form of similarity of true stresses and logarithmic strains deviators. For optimal shapes of the disk, changes of geometry and a continuity function are presented. The theoretical considerations based on the perception of the structural components as some highlighted objects with defined properties is presented.
Słowa kluczowe
Rocznik
Strony
57--69
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, Cracow, Poland
Bibliografia
  • 1. Ahmet N., Eraslan., 2003, Elastic-plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions, International Journal of Mechanical Sciences, 45, 4, 643-667
  • 2. Betten J., 2001, Mathematical modeling of materials behavior under creep conditions, Applied Mechanics Reviews, 54, 2, 107-132
  • 3. Białkiewicz J., 1986, Dynamic creep rupture of a rotating disk of variable thickness, International Journal of Mechanical Sciences, 28, 10, 671-681
  • 4. Callıoglu H., Topcu M., Tarakcilar A.R., 2006, Elastic-plastic stress analysis on orthotropic rotating disc, International Journal of Mechanical Sciences, 48, 985-990
  • 5. Dems K., Mróz Z., 1992, Shape sensitivity analysis and optimal design of disks and plates with strong discontinuities of kinematic fields, International Journal of Solids and Structures, 29, 4, 437-463
  • 6. Farshi B., Bidabadi J., 2008, Optimum design of inhomogeneous rotating discs under secondary creep, International Journal of Pressure Vessels and Piping, 85, 507-515
  • 7. Ganczarski A., Skrzypek J., 1976, Optimal shape of prestressed disks in creep, Journal of Structural Mechanics, 2, 141-160
  • 8. Golub V.P., Romanov A.V., Romanova N.V., 2008, Nonlinear creep and ductile creep rupture of perfectly elastoplastic rods under tension, International Applied Mechanics, 44, 4, 459-470
  • 9. Golub V.P., Teteruk R.G., 1994, Evaluating the time to ductile fracture under creep conditions, International Applied Mechanics, 30, 11, 898-905
  • 10. Gun H., 2008, Two-dimensional boundary element analysis of creep continuum damage problems with plastic effects, Computational Materials Science, 41, 3, 322-329
  • 11. Hoff N.J., 1953, The necking and rupture of rods subjected to constant tensile loads, Journal of Applied Mechanics – Transactions of ASME, 20, 105-112
  • 12. Jahed H., Farshi B., Bidabadi J., 2005, Minimum weight design of inhomogeneous rotating discs, International Journal of Pressure Vessels and Piping, 82, 35-41
  • 13. Kachanov L.M., 1960, Creep Theory, Fizmatgiz, Moskow
  • 14. Kachanov L.M., 1999, Rupture time under creep conditions, International Journal of Fracture, 97, xi-xviii
  • 15. Pedersen P., 2001, On the influence of boundary conditions, Poisson’s ratio and material nonlinearity on the optimal shape, International Journal of Solids and Structures, 38, 3, 465-477
  • 16. Piechnik S., Chrzanowski M., 1970, Time of total creep rupture of a beam under combined tension and bending, International Journal of Solids and Structures, 6, 4, 453-477
  • 17. Rysz M., 1987, Optimal design of a thick-walled pipeline cross-section against creep rupture, Acta Mechanica, 1, 4, 83-102
  • 18. Szuwalski K., 1989, Optimal design of bars under nonuniform tension with respect to ductile creep rupture, Mechanics of Structures and Machines, 3, 303-319
  • 19. Szuwalski K., 1995, Optimal design of disks with respect to ductile creep rupture time, Structural Optimization, 10, 54-60
  • 20. Szuwalski K., Ustrzycka A., 2012, Optimal design of bars under nonuniform tension with respect to mixed creep rupture time, International Journal of Non-Linear Mechanics, 47, 55-60
  • 21. Szuwalski K., Ustrzycka A., 2013, The influence of boundary conditions on optimal shape of annular disk with respect to ductile creep rupture time, European Journal of Mechanics, 37, 79-85
  • 22. Życzkowski M., 1971, Optimal structural design in rheology, Journal of Applied Mechanics, 38, 1, 39-46
  • 23. Życzkowski M., 1988, Optimal structural design under creep conditions, Applied Mechanics Reviews, 12, 453-461
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc440238-6700-4004-9238-b7336e39c96f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.