PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Liquid Forging Pressure on Solubility and Freezing Coefficients of Cast Aluminum 2124, 2218 and 6063 Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Liquid forging alias squeeze casting gives the combined advantage of casting and forging. Optimum process parameters are important to get a cost-efficient process. In this study, four materials have been identified, which are extensively used in industries. These materials are commercially pure Al and three Al-alloys namely, 2124, 2218 and 6063. The pouring temperature and the mold temperature is maintained at 700°C and 250°C respectively. The materials were developed at seven pressure variations from 0 to 150 MPa. The effect of the pressure on the microstructures, porosity, and hardness has been reported. The coefficient of solubility is estimated for all materials and a polynomial relationship is found to be the best fit with the applied pressure. The pressure of 100 MPa gives better increment in hardness. The melting point and the freezing coefficient of the materials under study have been determined. A linear relationship between the pressure and the freezing time is deduced. It is observed that the solubility and the freezing coefficients depend on the pressure as well, in addition to the composition and temperature.
Twórcy
autor
  • Associate Professor, Mechanical Engineering Department, College of Engineering, King Khalid University, Abha-61411, Asir, Kingdom of Saudi Arabia
autor
  • Associate Professor, Mechanical Engineering Department, College of Engineering, King Khalid University, Abha-61411, Asir, Kingdom of Saudi Arabia
Bibliografia
  • [1] S. N. Chou, J. L. Huang, D. F. Lii, H. H. Lu, J. Alloys Compd. 419, 98 (2006).
  • [2] M. Dhanashekar, V. S. S. Kumar, Procedia Eng. 97, 412 (2014).
  • [3] M. T. Abou EI-Khair, Mater. Lett. 59, 894 (2005).
  • [4] X. Fang, S. Lü, L. Zhao, J. Wang, L. Liu, S. Wu, Mater. Design. 94, 353 (2016).
  • [5] C. G. Kang, K. S. Yun, Fabrication of metal-matrix composite by the die-casting technique and the evaluation of their mechanical properties, J. Mater. Process Tech. 62, 116 (1996).
  • [6] Y. Liu, Z. Zheng, C. Yang, D. Zhu, W. Chen, Tribol. Lett. 65, 39 (2017).
  • [7] V. Tirth, J. Tribol. 140, 1 (2018).
  • [8] V. Tirth, S. Ray, M. L. Kapoor, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 1246 (2009).
  • [9] V. Tirth, A. Algahtani, E. R. I. Mahmoud, Mater. Express. 8 (6), 475 (2018).
  • [10] V. Tirth, A. Algahtani, A. Edacherian, Mater. Express. 8 (6), 531 (2018).
  • [11] A. Jahangiria, S. P. H. Marashi, M. Mohammadaliha, V. Ashofte, J. Mater. Process Tech. 245, 1 (2017).
  • [12] P. G. C. Manjunath, A. Kumar, M. B. Parappagoudar, J. Manuf. Process. 32, 199 (2018).
  • [13] Y. Wang, S. Zhao, C. Zhang, Trans. Nonferrous Met. Soc. China, 28 (2), 235 (2018).
  • [14] L. Natrayan, M. S. Kumar, K. Palanikumar, Mater. Res. Express 5, 1 (2018).
  • [15] Q. Zhao, Y. Wu, W. Rong, K. Wang, L. Yuan, X. Heng, J. Magnes. Alloy. 6 (2), 197 (2018).
  • [16] F. Wang, W. Meng, H. Zhang, Z. Han, Trans. Nonferrous Met. Soc. China. 28 (10), 1920 (2018).
  • [17] Y. Zou, Phase equilibria and solidification of Al rich Al-Cu-Mg alloys. In: PhD Thesis. University of Wisconsin, Madison USA, 1997.
  • [18] T. M. Yue, G. A. Chadwick, Jr. of Mat. Proc. Tech. 58, 302 (1996).
  • [19] R. Pastircak, J. Scury, Arch. Metall. Mater. 62 (4), 2193 (2017).
  • [20] M. Lagiewka, Arch. Metall. Mater. 59 (2), 707 (2014).
  • [21] F. Hnilica, V. Ocenasek, I. Stulikova, B. Smola, Kovove Mater. 43, 300 (2005).
  • [22] K. Solek, P. Kapranos, Arch. Metall. Mater. 61 (4), 1901 (2016).
  • [23] K. Solek, S. Szczepanik, Arch. Metall. Mater. 60 (4), 2613 (2015).
  • [24] S. N. Kulkarni, D. K. Radhakrishna, Mater Sci-Poland. 29 (2), 135 (2011).
  • [25] H. Murat Lus, Kovove Mater. 50, 243 (2012).
  • [26] H. Barhoumi, S. Souissi, M. ben Amar, F. Elhalouani, Kovove Mater. 54, 249 (2016).
  • [27] W. G. Wang, K. C. Chang, K. Matsugi, G. Sasaki, Mater. Trans. 49 (3), 637 (2008).
  • [28] L. Hao, X. Yang, S. Lu, X. Fang, S. Wu, Materials Science & Engineering A. 707, 280 (2017).
  • [29] D. H. Chen, Z. Chen, X. R. Zhu, Y. Y. Wu, Z. M. Guo, H. X. Shi, Rare. Metal. Mat. Eng. 46 (11), 3525 (2017).
  • [30] A. Klasik, M. Maj, K. Pietrzak, A. Wojciechowski, J. Sobczak, Arch. Metall. Mater. 61 (4), 2123 (2016).
  • [31] S. Li, K. Mine, S. Sanakanishi, K. Anzai, Mater. Trans. 48 (8), 2186 (2007).
  • [32] S. Venkatesana, M. A. Xaviorb, Materials Today: Proceedings 5, 11175 (2018).
  • [33] B. Sh, X. Sh, L. Tian, N. Zhao, L. Li, Trans. Nonferr. Met. Soc. China 97, 412 (2013).
  • [34] J. Singh, S. K. Goel, V. N. S. Mathur, M. L. Kapoor, AFS Transaction 99, 815 (1991).
  • [35] http://www.matweb.com/search/datasheet.aspx?bassnum=AMEAL00
  • [36] http://www.matweb.com/search/datasheet.aspx?matguid=19ddeefbcbb74c0aa557e4cfcfcb0797
  • [37] http://www.matweb.com/search/datasheet.aspx?matguid=47278d3d797941b99c7e73f1cd890317
  • [38] http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6063T6
Uwagi
EN
1. Authors thankfully acknowledge the funding and support provided by Deanship of Scientific Research, King Khalid University, Abha-Asir, Kingdom of Saudi Arabia, with grant number G. R. P.-321-40 to complete the research work.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc4165a0-80e5-4ffe-a97c-93d006982153
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.