PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Assessment of spread foundation settlement using statistical determination of characteristic values of subsoil properties

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to Eurocode 7, limit state design codes generally draw more attention to ultimate limit states than to serviceability limit states. This paper presents the problem of settlement assessment of spread foundations on clays when the foundation design is governed by the serviceability limit state requirements. The paper presents the test results of geotechnical parameters for heavily preconsolidated boulder clays (sandy clay saCl and silty sandy clay sasiCl), which prevail on the Warsaw University of Life Sciences – SGGW campus. The test results were used for settlement calculations of spread foundations. Based on the results of field and laboratory tests, the problem of spatial variability assessment and determination of the characteristic value of soil parameters was addressed. Classical statistics and Bayesian analysis were used in the statistical analysis of the test results. Settlements of spread foundations were calculated based on the soil parameters obtained from cone penetration tests (CPTs) and dilatometer tests (DMTs). Special attention was drawn to the selection of the characteristic values of soil parameters. Determination of the characteristic value of the constrained modulus Mk was performed using two methods: according to the well-known and frequently used formula proposed by Schneider (1997; 1999) and according to the European draft standard prEN 1997-1:2022-09. Settlement calculations of spread foundations were carried out taking into account changes in the stresses and the constrained modulus in the subsoil. The calculated settlements were verified by field measurements performed during the construction of the object. Comparison of settlements obtained from the characteristic values of the constrained modulus Mk estimated according to prEN 1997-1:2022-09 with the measured settlements indicates that the calculated values were significantly higher than the measured values. Smaller differences between the measured and calculated settlements were obtained when the characteristic values of the constrained modulus Mk were determined from Schneider's formula, while smaller differences were obtained when the mean values of the constrained modulus Mmean were used.
Wydawca
Rocznik
Strony
179--192
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Geotechnical Engineering, Institute of Civil Engineering, Warsaw University of Life Sciences Warsaw, Poland
  • Department of Geotechnical Engineering, Institute of Civil Engineering, Warsaw University of Life Sciences Warsaw, Poland
  • Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology Bialystok, Poland
Bibliografia
  • [1] Alén, C.G. (1998). On probability in geotechnics. Random calculation models exemplified on slope stability analysis and ground-superstructure interaction. PhD thesis, Chalmers University of Technology, Göteborg.
  • [2] Alén, C.G., Sällfors, G.B. (1999). Uncertainties in modeling of soil properties. In: Barends et al. (eds), Proc. of the 12th European Conference on Soil Mechanics and Geotechnical Engineering, Geotechnical Engineering for Transportation Infrastructure, Balkema, Rotterdam, vol. 1, 303-308.
  • [3] Batog, A., Hawrysz, M. (2010). Wartości charakterystyczne parametrów geotechnicznych gruntów wyznaczane według Eurokodu 7 (Characteristic values of geotechnical parameters of soil determined according to Eurocode 7). Górnictwo i Geoinżynieria, 34(2), 77-85 (in Polish).
  • [4] Bond, A., Harris, A. (2008). Decoding Eurocode 7. Taylor & Francis.
  • [5] Ching, J., Phoon, K-K., Chen, K-F., Orr, T.L.L., Schneider, H.R. (2020). Statistical determination of multivariate characteristic values for Eurocode 7. Structural Safety, 82, 101893. https:// doi.org/10.1016/j.strusafe.2019.101893
  • [6] European standard EN 1997-1:2004 Eurocode 7: Geotechnical design – Part 1: General rules. CEN, 2004.
  • [7] European standard FprEN 1990:2022-09 Eurocode – Basic of structural and geotechnical design. CEN, 2022.
  • [8] European standard prEN 1997-1:2022-09 Eurokode 7: Geotechnical design – Part 1: General rules. CEN, 2022.
  • [9] European standard EN ISO 14688-1:2018-05 Geotechnical investigation and testing – identification and classification of soil – Part 1: Identification and description. CEN, 2018.
  • [10] Godlewski, T., Koda, E., Mitew-Czajewska, M., Łukasik, S., Rabarijoely, S. (2023). Essential georisk factors in the assessment of the influence of underground structures on neighboring facilities. Archives of Civil Engineering, 69(3), 113- 128. https://doi.org/10.24425/ace.2023.146070
  • [11] Jaksa, M.B., Brooker, P.I., Kaggwa, W.S. (1997). Inaccuracies Associated with Estimating Random Measurement Errors. Journal of Geotechnical and Geoenviromental Engineering, 123(5), 393-401. https://doi.org/10.1061/(ASCE)1090- 0241(1997)123:5(393)
  • [12] Kulhawy, F.H., Mayne, P.W. (1990). Manual on estimating soil properties for foundation design. Final Report No. EL-6800, Electric Power Research Institute.
  • [13] Lacasse, S., Nadim, F. (1994). Reliability issues and future challenges in geotechnical engineering for offshore structures. Proc. of 7th International Conference on the Behaviour of Offshore Structures, BOSS’94, Massachusetts, 1994, Vol. 1: Geotechnics, C. Chryssostomidis & al. (eds.), Elsevier, 1–48.
  • [14] Lechowicz, Z., Rabarijoely, S., Kutia, T. (2017). Determination of undrained shear strength and constrained modulus from DMT for stiff overconsolidated clays. Annals of Warsaw University of Life Sciences – SGGW, 49(2), 107-116. https://doi.org/10.1515/ sggw-2017-0009
  • [15] Lesny, K. (Lead discusser) (2017). Chapter 2: Evaluation and consideration of model uncertainties in reliability based design. Joint TC205/TC304 Working Group on Discussion of statistical/reliability methods of Eurocodes – Final Report. Sep 2017. 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea, 20-64.
  • [16] Löfman, M. (2016). Determination of characteristic values of geotechnical parameters. Proc. of 25th European Young Geotechnical Engineers Conference, Sibiu, Romania, 73- 82.
  • [17] Młynarek, Z., Wierzbicki, J., Lunne, T. (2023). The Use of CPTU and DMT Methods to Determine Soil Deformation Moduli—Perspectives and Limitations. Studia Geotechnica et Mechanica, 2023; 1–29. https://doi.org/10.2478/sgem-2023- 0021.
  • [18] Nguyen, T. S., Likitlersuang, S., Ohtsu, H., Kitaoka, T. (2017). Influence of the spatial variability of shear strength parameters on rainfall induced landslides: a case study of sandstone slope in Japan. Arabian Journal of Geosciences, 10(16), 369. https:// doi.org/10.1007/s12517-017-3158-y
  • [19] Nguyen, T. S., Likitlersuang, S. (2019). Reliability analysis of unsaturated soil slope stability under infiltration considering hydraulic and shear strength parameters. Bulletin of Engineering Geology and the Environment, 78, 5727-5743. https://doi.org/10.1007/s10064-019-01513-2.
  • [20] Nguyen, T. S., Likitlersuang, S. (2021). Influence of the spatial variability of soil shear strength on deep excavation: A case study of a Bangkok underground MRT station. International Journal of Geomechanics, 21(2), 04020248. https://doi. org/10.1061/(ASCE)GM.1943-5622.0001914.
  • [21] Nguyen, T. S., Ngamcharoen, K., Likitlersuang, S. (2023). Statistical characterisation of the geotechnical properties of Bangkok subsoil. Geotechnical and Geological Engineering, 41(3), 2043-2063. https://doi.org/10.1007/s10706-023- 02390-z
  • [22] Olek, B., Woźniak, H., Stanisz, J. (2014). Metody statystyczne stosowane do wyznaczania parametrów geotechnicznych (Statistical methods used to determine geotechnical parameters). Przegląd Geologiczny, 62(10/2), 657-663 (in Polish).
  • [23] Pohl, C. (2011). Determination of characteristic soil values by statistical methods. In: Vogt, N., Schuppener, B., Straub, D., Bräu, G.: Geotechnical Safety and Risk. ISGSR 2011, Karlsruhe: Bundesanstalt für Wasserbau, 427-434, ISBN 978-3-939230- 01-4. https://hdl.handle.net/20.500.11970/99593
  • [24] Polish Standard PN-B-03020:1981 Grunty budowlane – Posadowienie bezpośrednie Budowli – Obliczenia statyczne i projektowanie (Building soils – Foundation bases – Static calculation and design). Polski Komitet Normalizacyjny (in Polish).
  • [25] Poulos, H.G., Davis, E. H. (1974). Elastic solutions for soil and rock mechanics. John Wiley & Sons, INC. New York.
  • [26] Puła, W. (2014). Wybrane zagadnienia dotyczące wyznaczania wartości charakterystycznych w geotechnice. (Selected issues regarding the determination of characteristic values in geotechnics). Acta Scientiarum Polonorum, Architectura, 13(1), 21-36 (in Polish).
  • [27] Puła, W., Zaskórski, Ł. (2015). Estimation of the probability distribution of the random bearing capacity of cohesionless soil using the random finite element method. Structure and Infrastructure Engineering, 11(5), 707–720. https://doi.org/10.1 080/15732479.2014.903501
  • [28] Rabarijoely, S., Jabłonowski, S., Garbulewski, K. (2013). Dobór parametrów w projektowaniu geotechnicznym z wykorzystaniem teorii Bayesa (Evaluation of parameters in geotechnical design using Bayes’ theory). Budownictwo i Inżynieria Środowiska, 4, 211-218 (in Polish).
  • [29] Rabarijoely, S. (2019a). A Bayesian Approach in the Evaluation of Unit Weight of Mineral and Organic Soils Based on Dilatometer Tests (DMT). Applied Sciences, 9(18), 3779. https:// doi.org/10.3390/app9183779
  • [30] Rabarijoely, S. (2019b). A new method for the estimation of hydraulic permeability, coefficient of consolidation, and soil fraction based on the dilatometer tests (DMT). Studia Geotechnica et Mechanica, 41(4), 212-22
  • [31] Rabarijoely, S., Lech, M., & Bajda, M. (2021). Determination of relative density and degree of saturation in mineral soils based on in situ tests. Materials, 14(22), 6963.
  • [32] Schneider, H.R. (1997). Definition and determination of characteristic soil properties. Panel discussion of 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg Germany 1997. https://www.issmge. org/publications/online-library
  • [33] Schneider, H.R. (1999). Determination of characteristic soil properties. Geotechnical Engineering for Transportation Infrastructure, Barends et al. Balkema, Rotterdam, 1999.
  • [34] Schneider, H.R., Fitze, P. (2013). Characteristic shear strength values for EC7: Guidelines based on a statistical framework. Proc. of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, IOS Press., 318- 324. https://doi.org/10.3233/978-1-61499-199-1-318
  • [35] Senneset, K., Sandven, R., Svano, G. (1989). Strength and deformation parameters from cone penetration tests. Transportation Research Record. No. 1235, 24-37.
  • [36] Simpson, B., Morrison, P., Yasuda, S., Townsend, B., Gazetas, G. (2009). State of the art report. Analysis and design. Proc. 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, Vol. 4, 2873– 2929. https://www.issmge.org/uploads/publications/1/21/ STAL9781607500315-2873.pdf
  • [37] Straż, G., Borowiec, A. (2021). Evaluation of the unit weight of organic soils from a CPTM using an Artificial Neural Networks. Archives of Civil Engineering, LXVII(3), 259-281. https://doi. org/10.25525/ace.2021.138055
  • [38] Sulewska, M.J., Lechowicz, Z. (2024). Determination of the characteristic values of the undrained shear strength of organic soils according to Eurocode 7. Archives of Civil Engineering, LXX(1), 39-52. https://doi.org/10.24425/ace.2024.148899
  • [39] Wysokiński, L., Kotlicki, W., Godlewski, T. (2011). Projektowanie geotechniczne według Eurokodu 7 (Geotechnical design according to Eurocode 7). Poradnik. Instytut Techniki Budowlanej, Warszawa, 2011 (in Polish).
  • [40] Yoon, G.L., Yoon, Y.W., Kim, H.Y. (2010). Determination of geotechnical characteristic values of marine clay. Georisk. 4(1), 51-61. https://doi.org/10.1080/17499510902896612
  • [41] Zhang, Y., Shen, M., Juang, C.H., Tan, X. (2020). Fractile-based method selecting characteristic values for geotechnical design with LRFD. Soils and Foudations, 60, 115- 128. https://doi. org/10.1016/j.sandf.2020.01.01
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc3cfb63-0bfa-4012-b949-1a06ed0588ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.