PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of Remote Sensing Techniques in the Analysis of the Influence of Forest Ecosystems over the Precipitation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The processing of remote sensing images and their integration into a Geographic Information System (GIS) to analyse and manage an area represents a modern approach that is increasingly used. In the present paper, a predominantly mountainous area was studied and analysed, located in Hunedoara County – Romania, near the city of Hateg and the Retezat Mountains. A satellite scene from 09.24.2019 from the RapidEye remote sensing system was retrieved, processed and subjected to complex remote sensing analyses. These remote sensing data were analysed and processed, and based on them a series of specific indices were calculated and interpreted, namely, for the characterisation of the vegetation: NDVI (Normalised Difference Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), NDRE (Normalised Difference Red Edge Index), SAVI (Soil Adjusted Vegetation Index), MSAVI (Modified Soil Adjusted Vegetation Index), CI Green (Chlorophyll Index Green), CI Red Edge (Red Edge Chlorophyll Index), RTVI core (Red Edge Triangular Vegetation Index), SR (Simple Ratio), Red Edge SR (Red Edge Simple Ratio), LAI (Leaf Area Index).
Słowa kluczowe
Rocznik
Tom
Strony
296--304
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Department of Sustainable Development and Environmental Engineering, University of Life Sciences "King Mihai I" From Timisoara, Romania
  • Department of Hydrotechnical Engineering, Faculty of Civil Engineering, Polytechnic University of Timisoara, Romania
Bibliografia
  • Abagiu, P., Bumbu, G., Munteanu, St. (1980). Determinarea parametrilor hidrologici ai pădurii în raport cu modul de gospodărire, scurgerea de suprafaţă şi intercepţia în coronament în arborete de fag şi molid. Departamentul Ssilviculturii, Institutul de Cercetări şi Amenajări Silvice, Bucureşti.
  • Achard, F., Beuchle, R., Mayaux, P., Stibig, H.-J., Bodart, C., Brink, A., Carboni, S., Desclée, B., Donnay, F., Eva, H.D. (2014). Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Chang. Biol., 20, 2540-2554.
  • Balazovicova, L., Skodova, M. (2022). Vegetation and land use analysis for runoff estimation in small forested catchment: A case study of Tajovsky Brook in Slovakia. Carpathian Journal of Earth and Environmental Sci-ences, 17(1), 81-92.
  • Barbosa, A.S., Pires, M.M., Schulz, U.H. (2020). Influence of land-use classes on the functional structure of fish com-munities in Southern Brazilian headwater streams. Environmental management, 65(5), 618-629. https://doi.org/10.1007/s00267-020-01274-9
  • Bonan, G.B. (1998). The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Communi-ty Climate Model. Journal of Climate, 11(6), 1307-1326.
  • CLC, 2006. Corine Land Cover, v.2020_20u1. European Union, Copernicus Land Monitoring Service 2006, European Environment Agency (EEA). https://land.copernicus.eu/pan-european/corineland-cover/clc-2006?tab=download
  • CLC, 2012. Corine Land Cover, version v.2020_20u1. European Union, Copernicus Land Monitoring Service 2012, European Environment Agency (EEA) https://land.copernicus.eu/pan-european/corineland-cover/clc-2012?tab=download
  • CLC, 2018. Corine Land Cover, version v.2020_20u1. European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA) https://land.copernicus.eu/pan-european/corineland-cover/clc2018?tab=download
  • De Roo, A.P.J., Wesseling, C.G. LISEM (1996). A single event physically-based hydrological and soil erosion model for drainage basins,. I: Theory, input, and output. Hydrol. Process., 10, 1107-1117.
  • Gallagher, R.V., Allen, S., Wright, I.J. (2019). Safety margins and adaptive capacity of vegetation to climate change. Sci. Rep., 9, 8241.
  • Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342, 850-853.
  • Hawinkel, P., Thiery, W., Hermitte, S.L., Swinnen, E., Verbist, B., Van Orshoven, J., Muys, B. (2016). Vegetation response to precipitation variability in East Africa controlled by biogeographical factors. J. Geophys. Res. Biogeosci., 121, 2422-2444.
  • Huang, C., Liang, Y., He, H.S., Wu, M.M., Liu., B., Ma, T.X. (2021). Sensitivity of aboveground biomass and species composition to climate change in boreal forests of Northeastern China. Ecol. Model., 445, 109472.
  • Huang, X., Wen, D., Li, J., Qin, R. (2017). Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery. Remote Sens. Environ., 196, 56-75.
  • Huete, A.R., Liu, H.Q., Batchily, K., van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ., 59, 440-451.
  • Keim, R.F., Skaugset, A.E., Weiler, M. (2006). Storage of water on vegetation under simulated rainfall of varying intensi-ty, Advances in Water Resources, 29, 974-986. https://doi.org/10.1016/j.advwatres.2005.07.017
  • Maurer, G.E., Hallmark, A.J., Brown, R.F., Sala, O.E., Collins, S.L. (2020). Sensitivity of primary production to precipita-tion across the United States. Ecol. Lett., 23, 527-536.
  • Muzylo, A., Llorens, Pilar, P., Valente, F. Ernanda , Keizer, J.J., Domingo, F.rancisco, Gash, J.H.C. (2009). A Review of Rainfall Interception Modeling. Journal of Hydrology, 191-206. https://doi.org/10.1016/j.jhydrol.2009.02.058
  • Peng, J., Dan, L., Huang, M., 2014. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison. PLoS ONE, 9, e95282.
  • Planet Team (2017). Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA.
  • Redo, D.J., Millington, A.C. (2011). A hybrid approach to mapping land-use modification and land-cover transition from MODIS time-series data: A case study from the Bolivian seasonal tropics. Remote Sens. Environ., 115, 353-372.
  • Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. (1973). Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellite). Proceedings of 3rd Earth Resources Technology Satellite Symposium, Greenbelt, 10-14 December, SP-351, 309-317.
  • Rullan-Silva, C.D., Olthoff, A.E., Delgado de la Mata, J.A., Pajares-Alonso, J.A. (2013). Remote Monitoring of Forest Insect Defoliation – A Review. For. Syst., 22, 377.
  • Running, S.W., Coughlan, J.C. (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological modelling, 42(2), 125-154.
  • Tabarant, F. (2000). Apport de la télédetection et de la modélisation à l’étude de la dynamique de production d’un écosystème méditerranéen de Chênes verts dans le Sud de La France. Report SPI 00.124, Ispra, Italy, JRC Space Applications Institute.
  • Vittek, M., Brink, A., Donnay, F., Simonetti, D., Desclée, B. (2013). Land cover change monitoring using landsat MSS/TM satellite image data over west Africa between 1975 and 1990. Remote Sens., 6, 658-676.
  • Vrieling A, de Leeuw J, Said M.Y. (2013). Length of growing period over Africa: variability and trends from 30 years of NDVI time series, Remote Sensing, 5, 982-1000. https://doi.org/10.3390/rs5020982
  • Zhang, T., Ding, G.J., Zhang, J.P., Qi, Y.J. (2023). Stand, plot characteristics, and tree species diversity jointly dominate the recruitment biomass of subtropical forests. For. Ecol. Manag., 531, 120814.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc39a51e-c1e0-4f0b-8924-617ae1518e99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.