PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of the configuration of the dive’s towed equioment on the lifeguguard physiological overload

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the effects of rescue swimming on lifeguard cardiorespiratory system assessed based on heart rate (HR), lung ventilation (V̇E), oxygen uptake (V̇O₂) and blood lactate concentration (LA). Furthermore, we also investigated the possible impact of the rescue equipment of the towed diver on the lifeguard physiological overload and towing speed. Exercise variables were measured in lifeguards aged 25.5 ± 6. years before and immediately after the swimming a distance of 50 m with a person in tow with or without diving equipment. There were no significant effect of different protocols of towing on V̇O₂. The type of towing protocols have a significant effect on HR, V̇E/V̇O₂ ratio, and blood LA levels. The towing time and the average towing speed during simulated rescue operation were significantly different depending on the type of the towing person’s equipment. Towing a diver wearing only a dry suit significantly reduces the towing time, increases towing speed and may be result in better exercise tolerance and less fatigue for rescuer compared to towing a diver in a full classic or wing diving set.
Słowa kluczowe
Rocznik
Tom
Strony
113--122
Opis fizyczny
Bibliogr. 18 poz., fot., tab., wykr.
Twórcy
  • Department of Physiological and Medical Sciences, Academy of Physical Education Katowice, Poland
  • Institute of Healthy Living, Academy of Physical Education Katowice, Poland
autor
  • Department of Physiological and Medical Sciences, Academy of Physical Education Katowice, Poland
  • Institute of Healthy Living, Academy of Physical Education Katowice, Poland
  • Department of Underwater Works Technology, Naval Academy Gdynia, Poland
Bibliografia
  • 1. Santiago, P., Filipe M., Santiago S., Duarte D., Teques P. (2022) Lifeguard performance skills: A Systematic Review. International Journal of Aquatic Research and Education. 13: 4, 5.
  • 2. Stallman, R. K., & Hindmarch, T. (2012). Lifesaving Competition : Speed vs Safety Conflict of Interest ? 1–14.
  • 3. Ashton A., McCluskey A., Gwinnutt C.L., Keenan AM. Effect of rescue fatigue on performance of continuous external chest compressions over 3 min. (2002), 55(2): 151-155.
  • 4. Salvador, A. F., Penteado, R., Lisbôa, F. D., Corvino, R. B., Peduzzi, E. S., & Caputo, F. (2014). Physiological and metabolic responses to rescue simulation in surf beach lifeguarding. Journal of Exercise Physiology Online, 17(3), 21–31.
  • 5. Reilly, C.; Iggleden, M.; Tipton, M. Occupational Fitness Standards for Beach Lifeguards. Phase 1: The Physiological Demands of Beach Lifeguarding. Occup. Med. (2006), 56: 6–11.
  • 6. Olejniczak R. Effectiveness of Cardiopulmonary Resuscitation Depending on Lifeguard’s Level of Exhaustion, Central European Journal of Sport Sciences and Medicine. (2020), 30, 2.
  • 7. Barcala-Furelos R., Szpilman D., Palacios-Aguilar J., Costas-Veiga J., Abelairas-Gomez C., Bores-Cerezal A., López-García S., Rodríguez-Nuñez A. Assessing the efficacy of rescue equipment in lifeguard resuscitation efforts for drowning, The American Journal of Emergency Medicine (2016) . 34, 3: 480-485.
  • 8. Ruibal Lista, B., Palacios Aguilar, J., Prieto, J.A., López-García, S., Cecchini-Estrada, J.A. Validation of a New Incremental Swim Test as a Tool for Maximum Oxygen Uptake Analysis in Lifeguards. IJARE (2019), 11, 6.
  • 9. Saborit P., Soto Mdel V, Díez VG, Sanclement MA, Hernández PN, Rodríguez JE, Rodríguez LS. Physiological response of beach lifeguards in a rescue simulation with surf. Ergonomics. (2010) 53(9):1140-50.
  • 10. López-García S., Ruibal-Lista B., Palacios-Aguilar J., Santiago-Alonso M., Prieto J.A. Relationship between the Performance in a Maximum Effort Test for Lifeguards and the Time Spent in a Water Rescue. Int J Environ Res Public Health. (2021) 25;18(7):3407.
  • 11. Bosco G., Rizzato A., Moon R.E., Camporesi E.M. Environmental physiology and diving medicine. Front Psychol. (2018); 9: 72.
  • 12. Middleton J.R. Evaluation of Commercially Available Buoyancy Compensators. Test Report. Navy Experimental Diving Unit Panama City Fl. (1980): 1-80.
  • 13. Rush T. Test and Evaluation of the Integrated Divers Vest. Test Report. Navy Experimental Diving Unit Panama City Fl. (1994), 11-94.
  • 14. Cheung S.S., Ainslie P.N. Diving and Hyperbaric Physiology. In Advanced Environmental Exercise Physiology. Champaign IL: Human Kinetics (2022); 109-126.
  • 15. Kula A., Sadowski W., Stanula A., The efficiency of trailing by methods used in water rescue (2015), III International Scientific Conference „State, prospects and development of Rescue, Physical culture and Sports In the XXI century” At: Bydgoszcz, POLAND 1: 67-80
  • 16. Fernandes, R. J., Sousa, M., MacHado, L., & Vilas-Boas, J. P. Step length and individual anaerobic threshold assessment in swimming. International Journal of Sports Medicine, (2011) 32(12), 940–946.
  • 17. Van Duijn T, Cocker K, Seifert L, Button C. Assessment of water safety competencies: Benefits and caveats of testing in open water. Front Psychol. (2022), 28;13.
  • 18. Żebrowska A., Siermontowski P., Mikołajczyk R., Sikora M., Łakomy O. Evaluation of physiological stress experienced by divers maintaining an upright position on the water surface depending on the buoyancy control device. Journal of Polish Hyperbaric Research 3(76)2021, 35-44.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc3704a1-43ac-4ed9-99cb-e6d19de44494
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.