PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Controlled Porosity on the Mechanical Properties of Ti-Zr-Sn-Mo Biomedical Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a simple and effective way to fabricate highly porous scaffolds with controlled porosity and pore size is demonstrated. Ti-7Zr-6Sn-3Mo shape memory alloy fibers were prepared through a melt overflow process. The scaffolds with porosity of 65-85% and large pores of 100-700 μm in size were fabricated by sintering the as-solidified fibers. Microstructures and transformation behaviors of the porous scaffolds were investigated by means of SEM, DSC and XRD. The scaffolds were composed of β phase at room temperature. Superelasticity with the superelastic recovery strain of 7.4% was achieved by β↔α”phase transformation. An effect of porosity on mechanical properties of porous scaffolds was investigated by using compressive test. As the porosity increased from 65% to 85%, elastic modulus and compressive strength decreased from 0.95 to 0.06 GPa and from 27 to 2 MPa, respectively.
Twórcy
  • Keimyung University, Department of Advanced Materials Engineering, 1000 Shindang-dong Dalseo-gu, Daegu 704-701, Korea
  • Keimyung University, Department of Advanced Materials Engineering, 1000 Shindang-dong Dalseo-gu, Daegu 704-701, Korea
autor
  • Keimyung University, Department of Advanced Materials Engineering, 1000 Shindang-dong Dalseo-gu, Daegu 704-701, Korea
  • University of Incheon, Incheon, Republic of Korea
Bibliografia
  • [1] T. Sozen, L. Ozisik, N. C. Basaran, European Journal of Rheumatology 4.1, 46 (2016).
  • [2] J. I. Helsen, H. J. Breme, Metals as Biomaterials, 1st ed., John Wiley & Sons, United Kingdom (1998).
  • [3] A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wen, Acta Biomaterialia 8.5, 1661 (2012).
  • [4] K. Endoh, M. Tahara, T. Inamura, and H. Hosoda, Materials Science and Engineering A 704, 72 (2017).
  • [5] J. Y. Xiong, Y. C. Li, X. J. Wang, P. D. Hodgson, C. E. Wen, J. Mech. Behav. Biomed. Mater. 1, 269 (2008).
  • [6] C. Greiner, S. M. Oppenheimer, D. C. Dunand, Acta Biomater. 1, 705 (2005).
  • [7] G. Ryan, A. Pandit, B. Apatsidis, Biomaterials 27, 2651 (2006).
  • [8] M. Köhl, T. Habijan, M. Bram, H. P. Buchkremer, D. Stöver, and M. Köller, Advanced Engineering Materials 11.12, 959 (2009).
  • [9] G. Qiu, J. Wang, H. Cui, and T. Lu, SN Applied Sciences 1.1, 56 (2018).
  • [10] S. Wu, C. Y. Chung, X. Liu, P. K. Chu, K. J. P. Y Ho, C. L. Chu, Y. L. Chan, K. W. K. Yeung, W. W. Lu, K. M. C. Cheung, K. D. K. Luk, Acta Mater. 55, 3437 (2007).
  • [11] Z. H. Wang, C. Y. Wang, C. Li, Y. G. Qin, L. Zhong, B. P. Chen, Z. Y. Li, H. Liu, F. Chang, J. C. Wang, J. Alloy. Comp. 717, 271 (2017).
  • [12] J. I. Kim, H. Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Mater. Sci. Eng. A 403, 334 (2005).
  • [13] V. I. Itin, V. E. Gyunter, S. A. Shabalovskaya, R. L. C. Sachdeva, Mater. Char. 32, 179 (1994).
  • [14] S. Bose, M. Roy, A. Bandyopadhyay, Trends Biotechnol. 30, 546 (2012).
  • [15] S. A. Shabalovskaya, Mater. Eng. 12, 69 (2002).
  • [16] Y. W. Kim, Intermwtallics 62, 56 (2015).
  • [17] Y. F. Zheng, B. B. Zhang, B. L. Wang, L. Li, Q. B. Yang, L. S. Cui, Acta Biomater. 7, 2758 (2011).
Uwagi
EN
1. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2017R1A2B4005693).
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc36cf44-df0f-4390-903f-3dad42ac41c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.