PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High performances of grid-connected DFIG based on direct power control with fixed switching frequency via MPPT strategy using MRAC and neuro-fuzzy control

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents high performance improved direct power control (DPC) based on model reference adaptive control (MRAC) and neuro-fuzzy control (NFC) for grid connected doubly fed induction generator (DFIG), to overcome the drawbacks of conventional DPC which was based only on PID controllers, namely the speed/efficiency trade-off and divergence from peak power under fast variation of wind speed. A mathematical model of DFIG implemented in the d-q reference frame is achieved. Then, a direct power control algorithm for controlling rotor currents of DFIG is incorporated using PID controllers, and space-vector modulation (SVM) is used to determine a fixed switching frequency. The condition of the stator side power factor is controlled at unity level via MPPT strategy. The MRAC which is based on DPC is investigated instead of PID regulators. Also, the performances of NFC based on DPC are tested and compared to those achieved using MRAC controller. The results obtained in the Matlab/Simulink environment using robustness tests show that the NFC is efficient, has superior dynamic performance and is more robust during parameter variations.
Rocznik
Strony
27--39
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • University of Setif, Sétif 19000, Algeria, Department of Electrical Engineering, Automatic Laboratory of Sétif (LAS)
autor
  • University of Setif, Sétif 19000, Algeria, Department of Electrical Engineering, Automatic Laboratory of Sétif (LAS)
autor
  • University of Malaya, 50603 Kuala Lumpur, Malaysia, Department of Electrical Engineering, Power Electronics and Renewable Energy Research Laboratory (PEARL)
Bibliografia
  • [1] J. Mohammadi, S. Vaez-Zadeh, S. Afsharnia, E. Daryabeigi, A combined vector and direct power control for dfig-based wind turbines, Sustainable Energy, IEEE Transactions on 5 (3) (2014) 767–775.
  • [2] A. A. B. M. Zin, M. P. HA, A. B. Khairuddin, L. Jahanshaloo, O. Shariati, An overview on doubly fed induction generators controls and contributions to wind based electricity generation, Renewable and Sustainable Energy Reviews 27 (2013) 692–708.
  • [3] R. Cárdenas, R. Peña, S. Alepuz, G. Asher, Overview of control systems for the operation of dfigs in wind energy applications, IEEE Transactions on Industrial Electronics 7 (60) (2013) 2776–2798.
  • [4] M. F. Iacchetti, G. D. Marques, R. Perini, A scheme for the power control in a dfig connected to a dc bus via a diode rectifier, Power Electronics, IEEE Transactions on 30 (3) (2015) 1286–1296.
  • [5] H. Nian, Y. Song, Direct power control of doubly fed induction generator under distorted grid voltage, Power Electronics, IEEE Transactions on 29 (2) (2014) 894–905.
  • [6] P. Gayen, D. Chatterjee, S. Goswami, Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected dfig (doubly-fed induction generator), Energy 89 (2015) 461–472.
  • [7] R. D. Shukla, R. K. Tripathi, Isolated wind power supply system using double-fed induction generator for remote areas, Energy Conversion and Management 96 (2015) 473–489.
  • [8] R. D. Shukla, R. K. Tripathi, A novel voltage and frequency controller for standalone dfig based wind energy conversion system, Renewable and Sustainable Energy Reviews 37 (2014) 69–89.
  • [9] R. Cárdenas, R. Peña, S. Alepuz, G. Asher, Overview of control systems for the operation of dfigs in wind energy applications, IEEE Transactions on Industrial Electronics 7 (60) (2013) 2776–2798.
  • [10] E. Tremblay, S. Atayde, A. Chandra, Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: a dsp-based implementation approach, Sustainable Energy, IEEE Transactions on 2 (3) (2011) 288–299.
  • [11] B. Pimple, V. Vekhande, B. Fernandes, A new direct torque control of doubly-fed induction generator under unbalanced grid voltage, in: Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, IEEE, 2011, pp. 1576–1581.
  • [12] A. Hassan, A. El-Sawy, O. Kamel, Direct torque control of a doubly fed induction generator driven by a variable speed wind turbine, Journal of Engineering Sciences, Assiut University 41 (1) (2013) 199–216.
  • [13] H. Fathabadi, Control of a dfig-based wind energy conversion system operating under harmonically distorted unbalanced grid voltage along with nonsinusoidal rotor injection conditions, Energy Conversion and Management 84 (2014) 60–72.
  • [14] J. Hu, X. Yuan, Vsc-based direct torque and reactive power control of doubly fed induction generator, Renewable energy 40 (1) (2012) 13–23.
  • [15] R. Abdelli, D. Rekioua, T. Rekioua, A. Tounzi, Improved direct torque control of an induction generator used in a wind conversion system connected to the grid, ISA transactions 52 (4) (2013) 525–538.
  • [16] M. V. Kazemi, A. S. Yazdankhah, H. M. Kojabadi, Direct power control of dfig based on discrete space vector modulation, Renewable Energy 35 (5) (2010) 1033–1042.
  • [17] M. K. Bourdoulis, A. T. Alexandridis, Direct power control of dfig wind systems based on nonlinear modeling and analysis, Emerging and Selected Topics in Power Electronics, IEEE Journal of 2 (4) (2014) 764–775.
  • [18] K. Äström, B. Wittenmark, Adaptive control, NY: Addison- Wesley.
  • [19] J. Hu, J. Zhu, D. G. Dorrell, Predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions for power quality improvement, Sustainable Energy, IEEE Transactions on 6 (3) (2015) 943–950.
  • [20] J. Hu, J. Zhu, D. G. Dorrell, Model-predictive direct power control of doubly-fed induction generators under unbalanced grid voltage conditions in wind energy applications, Renewable Power Generation, IET 8 (6) (2014) 687–695.
  • [21] E. Shehata, Sliding mode direct power control of rsc for dfigs driven by variable speed wind turbines, Alexandria Engineering Journal 54 (4) (2015) 1067–1075.
  • [22] S. Taraft, D. Rekioua, D. Aouzellag, S. Bacha, A proposed strategy for power optimization of a wind energy conversion system connected to the grid, Energy Conversion and Management 101 (2015) 489–502.
  • [23] M. DOUMI, A. G. AISSAOUI, A. TAHOUR, M. ABID, Commande adaptative d’un système éolien, Rev. Roum. Sci. Techn. Électrotechn. Et Énerg. 60 (1) 99–110.
  • [24] B. Bossoufi, M. Karim, A. Lagrioui, M. Taoussi, A. Derouich, Observer backstepping control of dfig-generators for wind turbines variable-speed: Fpga-based implementation, Renewable Energy 81 (2015) 903–917.
  • [25] L. Xu, P. Cartwright, Direct active and reactive power control of dfig for wind energy generation, Energy Conversion, IEEE Transactions on 21 (3) (2006) 750–758.
  • [26] D. Zhi, L. Xu, Direct power control of dfig with constant switching frequency and improved transient performance, Energy Conversion, IEEE Transactions on 22 (1) (2007) 110–118.
  • [27] S. Demirbas, S. Bayhan, Active and reactive power control of doubly fed induction generator using direct power control technique, in: Power Engineering, Energy and Electrical Drives (POWERENG), 2013 Fourth International Conference on, IEEE, 2013, pp. 41–45.
  • [28] M. Farshadnia, S. A. Taher, Current-based direct power control of a dfig under unbalanced grid voltage, International Journal of Electrical Power & Energy Systems 62 (2014) 571–582.
  • [29] G. D. Marques, M. F. Iacchetti, Stator frequency regulation in a field-oriented controlled dfig connected to a dc link, Industrial Electronics, IEEE Transactions on 61 (11) (2014) 5930–5939.
  • [30] S. Abdeddaim, A. Betka, S. Drid, M. Becherif, Implementation of mrac controller of a dfig based variable speed grid connected wind turbine, Energy Conversion and Management 79 (2014) 281–288.
  • [31] T. Ramesh, A. K. Panda, S. S. Kumar, Type-2 fuzzy logic control based mras speed estimator for speed sensorless direct torque and flux control of an induction motor drive, ISA transactions 57 (2015) 262–275.
  • [32] R. Cárdenas, R. Peña, J. Clare, G. Asher, J. Proboste, Mras observers for sensorless control of doubly-fed induction generators, Power Electronics, IEEE Transactions on 23 (3) (2008) 1075–1084.
  • [33] A. Chaiba, R. Abdessemed M. L. Bendaas, L. A “Hybrid Intelligent Control based Torque Tracking approach for Doubly Fed Asynchronous Motor (DFAM) drive”, Journal of Electrical Systems. 262-272. 2012.
  • [34] C. Elmas, O. Ustun, H. H. Sayan, A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor drive, Expert Systems with Applications 34 (1) (2008) 657–664.
  • [35] Gökbulut, M., Dandil, B; & Bal, C., A hybrid neuro-fuzzy controller for brushless DC motors. Lecture Notes in Computer Science, 3949. 125-132.
  • [36] K. Kouzi, M. Nait-Said, M. Hilairet, É. Berthelot, A fuzzy sliding-mode adaptive speed observer for vector control of an induction motor, in: IEEE International Conference on Industrial Electronics IECON, 2008.
  • [37] R. Andreoli de Marchi, P. S. Dainez, F. J. Von Zuben, E. Bim, A multilayer perceptron controller applied to the direct power control of a doubly fed induction generator, Sustainable Energy, IEEE Transactions on 5 (2) (2014) 498–506.
  • [38] Y. Daili, J.-P. Gaubert, L. Rahmani, Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors, Energy Conversion and Management 97 (2015) 298–306.
  • [39] Y. Bekakra, D. B. Attous, Dfig sliding mode control driven by wind turbine with using a svm inverter for improve the quality of energy injected into the electrical grid, ECTI Transactions on Electrical Engineering, Electronics, and Communications 11 (1) (2014) 36–75.
  • [40] G. Abad, J. Lopez, M. Rodríguez, L. Marroyo, G. Iwanski, Doubly fed induction machine: modeling and control for wind energy generation, Vol. 85, John Wiley & Sons, 2011.
  • [41] Y. Lei, A. Mullane, G. Lightbody, R. Yacamini, Modeling of the wind turbine with a doubly fed induction generator for grid integration studies, Energy Conversion, IEEE Transactions on 21 (1) (2006) 257–264.
  • [42] A. Chaiba, R. Abdessemed, M. Bendaas, A. Dendouga, Performances of torque tracking control for doubly fed asynchronous motor using pi and fuzzy logic controllers, Journal of Electrical Engineering (2).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc366aaf-5672-4277-bd3a-2a5d210dc580
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.