PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the Effects of Water Scarcity and Biofertilizer Application (Pseudomonas putida) on the Growth and Productivity of Different Eggplant (Solanum melongena) Genotypes in Northeastern Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drought had affected the crops production in Morocco, during the last decade. Plants breeding is still a solution to increase crops tolerance for water scarcity. Using natural biofertilizer based on microorganisms still a good practice to enhance the resilience of agriculture to drought. The objective of this study is to investigate the effect of water shortage and use of a biofertilizer based on the strain of Pseudomonas putida on five genotypes of eggplants selected for drought tolerance under the semi-arid of the northeast of Morocco. Two irrigations regimes: 100% (amount of water irrigation made by growers) and 50% of this amount with and without the biofertilizer (1 × 108 UFC/g). The biofertilizer was applied three times during the plant growth stages. The experiment was conducted at commercial farm production and using a randomized complete block design. Plants were organized in blocks containing 3 plants for each genotype and repeated in 5 repetitions. Crops were planted on August 3rd, 2022, and experiments ended on January 2nd, 2023. The results showed different responses among the genotypes in terms of growth. The effect of Pseudomonas on plant height showed that there was a significant increase, at 100% irrigation for C14, B3, C8, B5 and C11 with 20%, 19%, 17%, 14.29% and 12,5%, respectively compared with the control. For C8 and B3, when subjected to 100% water with biofertilizer, there was an increase in the average number of fruits compared to 100% water without the biofertilizer. The highest yield was recorded with B5 under 100% irrigation + fertilizer (1.35 kg/plant). Water shortage impacted the productivity of all genotypes and the fruit number and yield increased with the use of the biofertilizer. Our study is still valuable under the conditions of this trial and more experiments will be needed at several seasons and at different growing conditions.
Twórcy
autor
  • Polydisciplinary Faculty of Nador, University Mohammed First, Selouane, Morocco
  • Polydisciplinary Faculty of Nador, University Mohammed First, Selouane, Morocco
  • Polydisciplinary Faculty of Nador, University Mohammed First, Selouane, Morocco
  • Polydisciplinary Faculty of Nador, University Mohammed First, Selouane, Morocco
  • Polydisciplinary Faculty of Nador, University Mohammed First, Selouane, Morocco
  • Faculty of Science and Techniques Al Hoceima, University Abdelmalek Essaadi, Ajdir, Morocco
  • Faculty of Science and Techniques Fes, University Sidi Mohamed Ben Abdellah, Fes, Morocco
  • Phytopathology Unit, Department of Plant Protection, Ecole Nationale d ’Agriculture de Meknès, Km. 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
  • Polydisciplinary Faculty of Nador, University Mohammed First, Selouane, Morocco
  • Polydisciplinary Faculty of Nador, University Mohammed First, Selouane, Morocco
Bibliografia
  • 1. Abdelraheem, A., Esmaeili, N., O’Connell, M., Zhang, J. 2019. Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products, 130, 118–129.
  • 2. Abideen, Z., Cardinale, M., Zulfiqar, F., Koyro, H.W., Rasool, S.G., Hessini, K., Darbali, W., Zhao, F., Siddique, K.H. 2022. Seed endophyte bacteria enhance drought stress tolerance in Hordeum vulgare by regulating, physiological characteristics, antioxidants and minerals uptake.Frontiers in Plant Science,13, 980046.
  • 3. Ahemad, M., Kibret, M. 2013. Mechanisms and applications of plant growth promoting Rhizobacteria: current perspective. Journal of King Saud University-Science 26–01, 1–20.
  • 4. Ahmad, F., Ahmad, I., Khan, M. 2006. Secreening of free-living rhizospheric bacteria for their multiple plant growth promoting activities Microbiology Research 163, 173–181.
  • 5. Ahmad, M., Imtiaz, M., Shoib Nawaz, M., Mubeen, F., Imran, A. 2022b. What did we learn from current progress in heat stress tolerance in plants? Can microbes be a solution? Front Plant Sci 13, 794782. https://doi.org/10.3389/fpls.2022.794782
  • 6. Ali, Q. and Ashraf, M. 2011. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism.J. Agron. Crop Sci. 197, 258–271. https://doi.org/10.1111/j.1439-037X.2010.00463.x
  • 7. Antoine, Z., Martin, F. 2023. Pseudomonas spp. can help plants face climate change. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2023.1198131
  • 8. Armand, N.H., Amiri ,H., Ismaili, A. 2016. Interaction of methanol spray and water-defcit stress on photosynthesis and biochemical characteristics of Phaseolus vulgaris L. cv. Sadry.Photochemistry and Photobiology, 92(1), 102–110. https://doi.org/10.1111/php.12548
  • 9. Arun, K., Seweta, S., Abdel Rahman, M.S., Gaurav, K., Arvind, K., Anupam, K. 2023. PGPRMediated Breakthroughs in Plant Stress Tolerance for Sustainable Farming. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-023-11013-z
  • 10. Backer, R., Rokem, J., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., Smith, D. 2018. Plant growth-promoting Rhizobacteria: mécanismes d´action et feuilles de route pour la commercialisation de biostimulants pour une agriculture durable. Front Plant Sci. 23–1473.
  • 11. Baker, N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
  • 12. Bernabeu, P.R., Pistorio, M., Tejerizo, G.T., Santos, P.E.D.L., Galar, M.L., Boiardi, J.L., Luna, M.F. 2015. Colonization and plant growth-promotion of tomato by Burkholderia tropica. Sci. Hortic. 191, 113–120.
  • 13. Björkman, O., Demmig, B. 1987.Photon yield of O2 evolution and chlorophyll fluorescence at 77 K among vascular plants of diverse origins. Planta 170, 489–504.
  • 14. Chamam, A., Sanguin, H., Bellvert, F., Meiffren, G., Comte, G., Wisniewski-Dye, F., Bertrand, C., Prigent-Combaret, C. 2013. Plant secondary metabolite profiling evidences straindependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 87, 65.
  • 15. Boutasknit, A., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Ben-Laouane, R., Ait-Rahou, Y., Mitsui, T., Douira, A., El Modafar, C., Wahbi, S., Meddich, A. 2021b. Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Scientific Reports 11, 1–23. https://doi.org/10.1038/s41598-021-02018-3
  • 16. Cohen, A.C., Travaglia, C.N., Bottini, R., Piccoli, P.N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botanique 87, 455–462.
  • 17. Cohen, A.C., Bottini, R., Pontin, M., Berli, F.J., Moreno D., Boccanlandro H., Travaglia C.N., Piccoli P.N. 2015. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.Physiol. Plant., 153, 79–90.
  • 18. Croft, H., Chen, J.M., Wang, R., Mo, G., Luo, S., Luo, X., He, L., Gonsamo, A., Arabian, J., Zhang, Y., Simic-Milas, A., Noland, T.L., He, Y., Homolová, L., Malenovský, Z., Yi, Q., Beringer, J., Amiri, R., Hutley, L., Arellano, P., Bonal, D. 2020. The global distribution of leaf chlorophyll content. Remote Sens. Environ., 236, 111479.
  • 19. Dbira, S., Al Hassan, M., Gramazio, P., Ferchichi, A., Vicente, O., Prohens, J., Boscaiu, M. 2018. Variable levels of tolerance to water stress (drought) and associated biochemical markers in Tunisian barley landraces. Molecules, 23, 613.
  • 20. Dodd, I.C., Zinovkina, N.Y., Safronova, V.I., Belimov, A.A. 2010. Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 157, 361–379.
  • 21. Driouech, F., Rached, S., Hairech, T. 2013. Climate variability and change in North African countries. Dans: Climate change and food security in West Asia and North Africa. Springer, Chap. 9, 161–172.
  • 22. El-Gizawy, E., Shalaby, G., Mahmoud, E. 2014. Effects of tea plant compost and mineral nitrogen levels on yield and quality of sugar beet crop. Communications in Soil Science and Plant Analysis, 45(9), 1181–1194. https://doi.org/10.1080/00103624.2013.874028
  • 23. FAO. Available online: https://www.fao.org/faostat/en/#home
  • 24. Fu, Q.S., Yang, R.C., Wang, H.S., Zhao, B., Zhou, C.L., Ren, S.X., and Guo, Y.D. 2013. Leaf morphological and ultrastructural performance of eggplant (Solanum melongena L.) in response to water stress, International Journal for Photosynthesis Research, 51(1), 109–114.
  • 25. Ghorbanpour, M., Hatami, M., Khavazi, K.2013. Role of plant growth promoting Rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus Niger under water deficit stress Turkish Journal of Biology, 37, 3–14.
  • 26. Gobu, R.B.N., Babu, B.N.H., Chandra, Shankar, K.M., Prakash, O. 2017. Effect of moisture stress on key physiological traits in brinjal (Solanum melongena L.) cultivars. Vegetos, 30, 403–408.
  • 27. Hayat, R., Ali, S., Amara, U., Khalid, R., Ahmed, I. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60, 579–598.
  • 28. Hazrati, S., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Modarres-Sanavy, S.A.M., Mohammadi, H., Nicola, S. 2017. Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agricultural Water Management, 181, 66–72.
  • 29. Heidari, M., Golpayegani, A. 2012. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11, 57–61.
  • 30. IPCC: Intergovernmental panel on climate change, 2013.
  • 31. Irankhah, S., Ganjeali, A., Mashreghi, M., Lari, Z. 2021. Mixed inoculum of rhizobacteria and arbuscular mycorrhizal fungus enhance diosgenin contain and phosphorus uptake in fenugreek under drought stress. Rhizosphere, 18, 100338.
  • 32. Joshi, D., Hooda, K., Bhatt, J., Mina, B., Gupta, H. 2009. Suppressive effects of composts on soil-borne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Protection, 28(7), 608–615.
  • 33. Kambale, C. 2006. Étude du comportement physiologique et agronomique de la tomate (Solanum lycopersicum L.) en réponse à un stress hydrique précoce. Doctoral theses University of Louvain, 196.
  • 34. Kiran, S., Furtana Baysal, G., Ellialtıoğlu, Ş.Ş. 2022. Physiological and biochemical assay of drought stress responses in eggplant (Solanum melongena L.) inoculated with commercial inoculant of Azotobacter chroococum and Azotobacter vinelandii. Scientia Horticulturae, 305, 111394. https://doi.org/10.1016/j.scienta.2022.111394
  • 35. Khalilpour, M., Mozafari, V., Abbaszadeh-Dahaji, P. 2021. Tolerance to salinity and drought stresses in pistachio (Pistacia vera L.) seedlings inoculated with indigenous stress-tolerant PGPR isolates. Scientia Horticulturae, 289, 110440.
  • 36. Liu, H.S., Li, F.M., and Xu H. 2004. Deficiency of water can enhance root respiration rate of drought sensitive but not drought-tolerant spring wheat. Agric. Water Manage, 64, 41–48. https://doi.org/10.1016/s0378-3774(03)00143-4
  • 37. Malhi, G.S., Kaur, M., Kaushik, P. 2021. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318.
  • 38. Meddich, A., Ait Rahou, Y., Boutasknit, A., Ait-ElMokhtar, M., Fakhech, A., Lahbouki, S., Benaffari, W., Ben-Laouane, R., Wahbi, S. 2021. Role of mycorrhizal fungi in improving the tolerance of melon (Cucumus melo) under two water deficit partial root drying and regulated deficit irrigation. Plant Biosystems, 0, 1–11. https://doi.org/10.1080/11263504.2021.1881644
  • 39. Meena, M.L.V.S., Gehlot, D.C., Meena, S., Kishor, Kumar and Meena, J.K. 2017. Impact of biofertilizers on growth, yield and quality of tomato (Lycopersicon esculentum Mill.) cv. Pusa Sheetal. Journal of Pharmacognosy and Phytochemistry, 6(4), 1579–1583.
  • 40. Munné Bosch, S., Allegre, I. 2004. Die and let live: leaf senescence contributes to plant survival under drought stress. Funct. Plant Biol., 31, 203–216.
  • 41. Nakashima, K., Suenaga, K. 2017. Vers l´amélioration génétique de la tolérance a la sécheresse dans la culture. Jpn. Agr. Res. Qlty., 51, 1–10.
  • 42. Neshat, M., Abbasi, A., Hosseinzadeh, A., Sarikhani, MR., Dadashi Chavan, D., Rasoulnia, A. 2022. Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiol Mol Biol Plants, 28(2), 347–361. https://doi.org/10.1007/s12298-022-01128-0
  • 43. Ngumbi, E., Kloepper, J. 2016. Bacterial-mediated drought tolerance: Current and future Prospects. Applied Soil Ecology 105, 109–125.
  • 44. Pandit, E., Panda, R.K., Sahoo, A., Pani, D.R., and Pradhan, S.K. 2020. Genetic relationship and structure analysis of root growth angle for improvement of drought avoidance in early mid-early maturing rice genotypes. Rice Sci., 27(2), 124–132. https://doi.org/10.1016/j.rsci.2020.01.003
  • 45. Per, T.S., Khan, N.A., Reddy, P.S., Masood, A., Hasanuzzaman, M., Khan, M.I.R., Anjum, N. A. 2017. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant physiology and biochemistry, 115, 126–140.
  • 46. Ramya, S.S., Vijayanand, N. and Rathinavel S. 2015. Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of (Solanum melongena L.). Int. J. Recycle Org. Waste Agri., 4, 167–173.
  • 47. Rincon, A., Valladares, F., Gimeno, T.E., Pueyo, J.J. 2008. Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiology, 28, 1693–1701.
  • 48. Sebbar, A., Badri, W., Fougrach, H., Hsaine, H., Saloui, A. 2011. Étude de la variabilité du régime pluviométrique au Maroc septentrional (1935–2004). Sécheresse, 22(3), 139–148.
  • 49. Seymen, M., Türkmen, Ö., Dursun, A., Paksoy, M., Dönmez, M.F. 2013. Effects of bacteria inoculation on yield, yield components and mineral composition in eggplant (Solanum melongena L.). In Proceedings of the ICOEST Conference, Urgüp, Turkey, 403–413.
  • 50. Sghir, F., Touati, J., Chliyeh, M., Ouazzani Touhami, A., Filali-Maltouf, A., El Modafar, C., Douira, A. 2014. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of date palm tree (Phoenix dactylifera) in Tafilalt and Zagora regions (Morocco). Int. J. Pure App. Biosci, 2(6), 1–11.
  • 51. Sinan, M., Boussetta, M., Rherrari, A. 2009. Changements climatiques : causes et conséquences sur le climat et les ressources en eau. Revue HTE, 142, 21–30.
  • 52. Somal, M.K., Karnwal, A. 2022. Efect of stress tolerance endophyticbacteria on the growth of Rheum emodi under abiotic stress. Plant Biol (stuttg). https://doi.org/10.1111/plb.13463
  • 53. Soufiani, M., Chakhchar, A., Aissam, S., Ferradous, A., Douira, A., Meddich, A., El Modafar, C. 2023. Effect of soil drought stress on leaf water status and photosynthetic apparatus in argan seedlings (Argania spinosa). Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 157(5), 1029–1037.
  • 54. Sseremba, G., Tongoona, P., Eleblu, P., Danquaha, E.Y., Kizito, E.B. 2018. Heritability of drought resistance in Solanum aethiopicum Shum group and combining ability of genotypes for drought tolerance and recovery. Sci. Hort., 240, 213–220.
  • 55. Stefan M., Munteanu N., Stoleru V., Mihasan M., Hritcu L. 2013. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Scientia Horticulturae, 151, 22–29.
  • 56. Stour, L., Agoumi, A. 2009. Sécheresse climatique au Maroc durant les dernières décennies. Hydroécologie Appl., 16, 215–232.
  • 57. Suryanto, A., Hamid, A. and Damaiyanti, D.R.R. 2017. Effectiveness of biofertilizer on growth and productivity of eggplant (Solanum melongena L.). Journal of Advanced Agricultural Technologies, 4(4), 368–371.
  • 58. Tingting, W., Jiaxin, X., Jian, C., Peng, L., Xin, H., Long, Y. and Li, Z. 2024. Progress in microbial fertilizer regulation of crop growth and soil remediation research, Plants, 13, 346. https://doi.org/10.3390/plants13030346
  • 59. Toraj, M.M., Hamze, H., Iraj, G.L. 2023. Impact of biofertiliser and zinc nanoparticles on enzymatic, biochemical, and agronomic properties of sugar beet under different irrigation regimes. Zemdirbyste-Agriculture, 110(3), 217–224. https://doi.org/10.13080/z-a.2023.110.025
  • 60. Touraine, F.B. 2008. Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root reponses to plant growth promoting rhizobacteria. Plant science, 175, 178–189.
  • 61. Tringovska, I. 2011. The effects of humic and biofertilizers on growth and yield of greenhouse tomatoes. In V Balkan Symposium on Vegetables and Potatoes, 960, 443–449.
  • 62. Tsimilli-Michael, M., Strasser, R.J. 2001. Fingerprints of climate changes on the photosynthetic apparatus’ behaviour, monitored by the JIP-test. “Fingerprints” of Climate Change, 229–247. https://doi.org/10.1007/978-1-4419-8692-4_14
  • 63. Vacheron, J., Desbrosses, G., Bouffaud, M., Touraine, B., Moënne, Y., Muller, D. 2013. Plant growth-promoting Rhizobacteria and root system functioning, Front Plant Sci., 4(356), 1–19.
  • 64. Yuwono, T., Handayani, D., Soedarsono, J. 2005. The role of osmotolerant Rhizobacteria in rice growth under different drought conditions Aust J Agr Res, 56, 715–721.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc31dda8-53e2-469c-a5c5-f80005435460
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.