PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A facile approach for the fabrication of superhydrophobic surface with candle smoke particles

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this communication is to explore a simple and efficient method for fabrication of superhydrophobic surface by candle smoke particles (CSPs). The properties of CSPs before and after the calcination process has been studied by SEM, TEM, TG-DSC, FT-IR and contact angle measurements. The results show that there is a complex mixture of elemental carbon and a variety of hydrocarbons in association with amorphous nanomaterial in CSPs, whose structure and composition leads to superhydrophobic properties. The wetting properties of CSPs can turn from superhydrophobic into superhydrophilic due to characteristic group changes by calcination process. Thus, it is a simple and efficient method to fabricate superhydrophobic or superhydrophilic surface by CSPs at low cost.
Rocznik
Strony
501--510
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • College of Applied Technology, Soochow University, 215325, Kunshan, Suzhou, China
Bibliografia
  • BAO Y.B., LI Q.Y., XUE P.F., HUANG J.F., WANG J.B., GUO W.H., WU C.F., 2011, Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface, Mater. Res. Bull, 46, 779-785.
  • BANTIGNIES J.L., SAUVAJOL J.L., RAHMANI A., FLAHAUT E., 2006, Infrared-active phonons in carbon nanotubes, Phys. Rev. B., 74, 195425.
  • CAMPBELL, DEAN J., ANDREWS M.J., STEVENSON K.J., 2012, New nanotech from an ancient material: chemistry demonstrations involving carbon-based soot, J. Chem. Educ., 89, 1280.
  • DENG X., MAMMEN L., BUTT H.J., VOLLMER D., 2012, Candle soot as a template for a transparent robust superamphiphobic coating, Science, 335, 67.
  • FINE P.M., CASS G.R., SIMONEIT B.R.T., 1999, Characterization of Fine Particle Emissions from Burning Church Candles, Environ. Sci. Technol., 33, 2352-2362.
  • FURSTNER R., BARTHLOTT W., NEINHUIS C., WALZEL P., 2005, Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir, 21, 956-961.
  • GONCALVES G., MARQUES P.A.A.P., PINTO R.J.B., TRINDADE T., NETO C.P., 2009, Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites, Compos. Sci. Technol., 69, 1051-1056.
  • HORIUCHI Y., SHIMIZU Y., KAMEGAWA T., MORI K., YAMASHITA H., 2011, Design of superhydrophobic surfaces by synthesis of carbon nanotubes over Co-Mo nanocatalysts deposited under microwave irradiation on Ti-containing mesoporous silica thin films, Phys. Chem. Chem. Phys., 13, 6309-6314.
  • HAN J.T., ZHENG Y., CHO J.H., XU X., CHO K., 2005, Stable superhydrophobic organic-inorganic hybrid films by electrostatic self-assembly, J. Phys. Chem. B., 109, 20773-20784.
  • JIANG L., ZHAO Y., ZHAI J., 2004, A lotus leaf like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics, Angew. Chem., Int. Ed., 43, 4338-4341.
  • KWANGSEOK S., KIM M.Y., KIM D.H., 2014, Candle-based process for creating a stable superhydrophobic surface, Carbon, 68, 583.
  • KUHLMANN U., JANTOLJAK H., PFANDER N., BERNIER P., JOURNET C., THOMSEN C. 1998, Infrared active phonons in single-walled carbon nanotubes, Chem. Phys. Lett., 294, 237-240.
  • KUSZLIK A.K., MEYER G., HEEZEN P.A.M., STEPANSKI M., 2010, Solvent-free slack wax de-oiling Physical limits, Chem. Eng. Res. D., 88, 1279-1283.
  • LI W., HOPKE P.K., 1993, Initial size distributions and hygroscopicity of indoor combustion aerosol particles, Aero. Sci. Technol.19, 305-316.
  • LIM H.S., HAN J.T., KWAK D., JIN M.H., CHO K., 2006, Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern, J. Am. Chem. Soc., 128, 14458-14459.
  • LIN J.J., CHU C.C., CHIANG M.L., TSAI W.C., 2006, Manipulating assemblies of high-aspect-ratio clays and fatty amine salts to form surfaces exhibiting a lotus effect, Adv. Mater., 18, 3248-3252.
  • LIU H., FENG L., ZHAI J., JIANG L., ZHU D.B., 2004, Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity, Langmuir, 20, 5659-5661.
  • LUYT A.S., ISHRIPERSADH K. 1999, Comparative thermoanalytical investigation of the cross-linking behaviour of three different paraffin waxes in the presence of dicumyl peroxide, Thermochimica acta, 333, 155-167.
  • MAXIME P., PAPADOPOULOS P., MAMMEN L., DENG X., SACHDEV H., VOLLMER D., BUTT H.J., 2014, Optimization of superamphiphobic layers based on candle soot, Pure Appl. Chem., 86, 87.
  • NISHIMOTO S., KUBO A., NOHARA K., ZHANG X., TANEICHI N., OKUI T., LIU Z., NAKATA K., SAKAI H., MURAKAMI T. 2009, TiO2 based superhydrophobic-superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing, Appl. Surf. Sci., 255, 6221-6225.
  • PAGELS J., WIERBICKA A., NILSSON E., ISAXON C., DAHL A., GUDMUNDSSON A., SWIETLICKI E., BOHGARD M. 2009, Chemical composition and mass emission factors of candle smoke particles, J. Aero. Sci., 40, 193-208.
  • SABER O., HEFNY N., AL JAAFARI A.A. 2011, Improvement of physical characteristics of petroleum waxes by using nano-structured materials, Fuel. Process. Technol., 92, 946-951.
  • SHI F., WANG Z.Q., ZHANG X. 2005, Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders, Adv. Mater., 17, 1005-1009.
  • SHOOTO D.N., DIKIO E.D. 2011, Morphological characterization of soot from the combustion of candle wax, Int. J. Electrochem. Sci. 6, 1269-1276.
  • SUN Z., HUANG Z., WANG J.S. 2006, Studies on the size distribution, number and mass emission factors of candle particles characterized by modes of burning, J. Aero. Sci., 37, 1484-1496.
  • SUNDERLAND P.B., QUINTIERE J.G., TABAKA G.A., LIAN D., CHIU C.W. 2011, Analysis and measurement of candle flame shapes, Proc. Combust. Inst., 33, 2489-2496.
  • YAN B., TAO J.G., PANG C., ZHENG Z., SHEN Z.X., HUAN C.H.A., YU T. 2008, Reversible UV-light-induced ultrahydrophobic-to-ultrahydrophilic transition in an α-Fe2O3 nanoflakes film, Langmuir, 24, 10569-10571.
  • ZAKY M.T., MOHAMED N.H. 2010, Comparative study on separation and characterization of high melting point macro-and micro-crystalline waxes, J. Taiw. Inst. Chem. Eng., 41, 360-366.
  • ZHAI L., CEBECI F.C., COHEN R.E., RUBNER M.F. 2004, Stable superhydrophobic coatings from polyelectrolyte multilayers, Nano Lett., 4, 1349-1353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc3175e1-30bc-4db4-982e-c13a88e47ea7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.