Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The impact of the gradient nanostructures on the fatigue properties of aluminum alloys remains limited. The ultrasonic surface rolling process (USRP) was utilized in this study to generate the gradient nanostructure on the surface of 7075 aluminum alloy, and the high fatigue properties with the stress ratio R = – 1 were following tested. The findings indicated that the fatigue limits of 3- and 6-passes-treated samples were found to reach 225 MPa (125%) and 200 MPa (100%), respectively, surpassing those of untreated sample. The characterizations of scanning electron microscope (SEM), laser confocal scanning microscope (LCSM), and X-ray diffractometer (XRD) showed a positive correlation between the number of rolling passes and the enhancement of the gradient hardening layer and residual compressive stress, contributing to the improvement in fatigue limit. Meanwhile, the SEM analysis of the fracture indicated that the fatigue crack initiation site was altered as a result of surface modification, and the crack initiation point of the 3-passes-treated sample was located further from the surface. Additionally, finite-element simulation was employed to analyze the stress distribution across the cross-section, and the fatigue risk coefficient Rf was used to quantify the impact of residual stress distribution and surface hardening on the crack initiation site. The results demonstrated that USRP not only altered the surface condition of the aluminum alloy but also changed its stress distribution in the cross-section. The combined effect of the two controlled the crack initiation site and the fatigue life of the 7075 aluminum alloy.
Czasopismo
Rocznik
Tom
Strony
art. no. e10, 2025
Opis fizyczny
Bibliogr. 54 poz., rys., wykr.
Twórcy
autor
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
autor
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
autor
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
autor
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
autor
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
autor
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
Bibliografia
- 1. Azarniya A, Taheri AK, Taheri KK. Recent advances in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective. JAlloy Compd. 2019;781:945–83.
- 2. Starke EA Jr, Staley JT. Application of modern aluminum alloys to aircraft. Prog Aerosp Sci. 1996;32(2–3):131–72.
- 3. Dong P, Liu Z, Zhai X, et al. Incredible improvement in fatigue resistance of friction stir welded 7075–T651 aluminum alloy via surface mechanical rolling treatment. Int J Fatigue.2019;124:15–25.
- 4. Liu D, Liu DX, Guagliano M, et al. Contribution of ultra-sonic surface rolling process to the fatigue properties of TB8alloy with body-centered cubic structure. J Mater Sci Technol.2021;61:63–74.
- 5. Vayssette B, Saintier N, Brugger C, et al. Numerical modelling of surface roughness effect on the fatigue behavior of Ti-6Al-4V obtained by additive manufacturing. Int J Fatigue.2019;123:180–95.
- 6. Sesana R, Santoro L. Proposal for kf effective notch factor estimation for life assessment of welded joint based on geometric parameters. Eng Fail Anal. 2024;157:107944.
- 7. Chen H, Zhou T, Wang X, et al. Correlation model between surface defects and fatigue behavior of 2024 aluminum alloy. Int JFatigue. 2023;168:107379.
- 8. Lee S, Rasoolian B, Silva DF, et al. Surface roughness parameter and modeling for fatigue behavior of additive manufactured parts: a non-destructive data-driven approach. Addit Manuf.2021;46:102094.
- 9. Murakami Y, Masuo H, Tanaka Y, et al. Defect analysis for addi-tively manufactured materials in fatigue from the view point of quality control and statistics of extremes. Procedia Struct Integr.2019;19:113–22.
- 10. Rotella G. Effect of surface integrity induced by machining on high cycle fatigue life of 7075–T6 aluminum alloy. J Manuf Process. 2019;41:83–91.
- 11. Pandey V, Chattopadhyay K, Santhi Srinivas NC, et al. Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy. Int J Fatigue. 2017;103:426–35.
- 12. Sanchez AG, You C, Leering M, et al. Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651. Int J Fatigue. 2021;143:106025.
- 13. Gao T, Sun Z, Xue H, et al. Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075–T6aluminium alloy. Int J Fatigue. 2020;139:105798.
- 14. Jiang XP, Man CS, Shepard MJ, et al. Effects of shot-peening andre-shot-peening on four-point bend fatigue behavior of Ti–6Al–4V. Mater Sci Eng A. 2007;468–470:137–43.
- 15. Wang JT, Zhang YK, Chen JF, et al. Effect of laser shock peening on the high-temperature fatigue performance of 7075 aluminum alloy. Mater Sci Eng A. 2017;704:459–68.
- 16. Sun Z, Retraint D, Baudin T, et al. Experimental study of micro-structure changes due to low cycle fatigue of a steel nanocrystallised by surface mechanical attrition treatment (SMAT). MaterCharact. 2017;124:117–21.
- 17. Ao N, Liu D, Zhang X, et al. Improved fretting fatigue mechanism of surface-strengthened Ti-6Al-4V alloy induced by ultrasonic surface rolling process. Int J Fatigue. 2023;170:107567.
- 18. Liu C, Liu D, Zhang X, et al. Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process. Int J Fatigue. 2019;125:249–60.
- 19. Yang J, Liu D, Zhang X, et al. The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy. Int J Fatigue. 2020;133:105373.
- 20. Peng X, Liang Y, Qin X, et al. The effect of ultrasonic surface rolling process on tension-tension fatigue limit of small diameter specimens of Inconel 718 superalloy. Int J Fatigue.2022;162:106964.
- 21. Xu X, Liu D, Zhang X, et al. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling. J Mater Sci Technol.2020;40:88–98.
- 22. Liu C, Liu D, Zhang X, et al. Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process. J MaterSci Technol. 2019;35(8):1555–62.
- 23. Gaur V, Doquet V, Persent E, et al. Surface versus internal fatigue crack initiation in steel: influence of mean stress. Int JFatigue. 2016;82:437–48.
- 24. Ma C, Andani MT, Qin H, et al. Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. J Mater Process Technol. 2017;249:433–40.
- 25. Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater SciEng A. 2004;375–377:38–45.
- 26. Bianchetti C, Lévesque M, Brochu M. Probabilistic analysis of the effect of shot peening on the high and low cycle fatigue behaviors of AA 7050–T7451. Int J Fatigue. 2018;111:289–98.
- 27. Huang HW, Wang ZB, Lu J, et al. Fatigue behaviors of AISI316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 2015;87:150–60.
- 28. Bahl S, Suwas S, Ungàr T, et al. Elucidating microstructural evolution and strengthening mechanisms in nanocrystalline surface induced by surface mechanical attrition treatment of stainless steel. Acta Mater. 2017;122:138–51.
- 29. Xiong Z, Jiang Y, Yang M, et al. Achieving superior strength and ductility in 7075 aluminum alloy through the design of multi-gradient nanostructure by ultrasonic surface rolling andaging. J Alloys Compd. 2022;918:165669.
- 30. Sun Q, Yang M, Jiang Y, et al. Achieving excellent corrosion resistance properties of 7075 Al alloy via ultrasonic surface rolling treatment. J Alloys Compd. 2022;911:165009.
- 31. Ao N, Liu D, Zhang X, et al. Enhanced fatigue performance of modified plasma electrolytic oxidation coated Ti-6Al-4V alloy:effect of residual stress and gradient nanostructure. Appl Surf Sci. 2019;489:595–607.
- 32. Han Q, Yi X. A unified mechanistic model for Hall-Petch and inverse Hall-Petch relations of nanocrystalline metals based on intra granular dislocation storage. J Mech Phys Solids.2021;154:104530.
- 33. Liu D, Liu D, Zhang X, et al. Microstructural evolution mechanisms in rolled 17–4PH steel processed by ultrasonic surface rolling process. Mater Sci Eng A. 2020;773:138720.
- 34. Kim J-C, Cheong S-K, Noguchi H. Evolution of residual stress redistribution associated with localized surface microcrackingin shot-peened medium-carbon steel during fatigue test. Int JFatigue. 2013;55:147–57.
- 35. Vielma AT, Llaneza V, Belzunce FJ. Effect of coverage and double peening treatments on the fatigue life of a quenched and tempered structural steel. Surf Coat Technol. 2014;249:75–83.
- 36. Torres M, Voorwald H. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int J Fatigue. 2002;24(8):877–86.
- 37. Sano Y, Obata M, Kubo T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening with outprotective coating. Mater Sci Eng, A. 2006;417(1–2):334–40.
- 38. Payne J, Welsh G, Christ RJ Jr, et al. Observations of fatigue crack initiation in 7075–T651. Int J Fatigue. 2010;32(2):247–55
- 39. Pang Z, Wang S, Yin X, et al. Effect of spindle speed during ultrasonic rolling on surface integrity and fatigue performance of Ti6Al4V alloy. Int J Fatigue. 2022;159:106794.
- 40. Yang J, Liu D, Ren Z, et al. Grain growth and fatigue behaviors of GH4169 superalloy subjected to excessive ultrasonic surface rolling process. Mater Sci Eng A. 2022;839:142875.
- 41. Wang C, Zou F, Zhou E, et al. Effect of split sleeve cold expansion on microstructure and fatigue performance of 7075–T6aluminum alloy holes. Int J Fatigue. 2023;167:107339.
- 42. Pham MS, Holdsworth SR. Role of microstructural condition on fatigue damage development of AISI 316L at 20 and 300°C. Int JFatigue. 2013;51:36–48.
- 43. Mughrabi H. Microstructural fatigue mechanisms: cyclic slip irre-versibility, crack initiation, non-linear elastic damage analysis. Int J Fatigue. 2013;57:2–8.
- 44. Meng L, Goyal A, Doquet V, et al. Ultrafine versus coarse grained Al 5083 alloys: from low-cycle to very-high-cycle fatigue. Int JFatigue. 2019;121:84–97.
- 45. Meng X, Leng X, Shan C, et al. Vibration fatigue performance improvement in 2024–T351 aluminum alloy by ultrasonic-assisted laser shock peening. Int J Fatigue. 2023;168:107471.
- 46. Ge M-Z, Xiang J-Y. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy. JAlloy Compd. 2016;680:544–52.
- 47. Zou J, Liang Y, Jiang Y, et al. Fretting fatigue mechanism of 40CrNiMoA steel subjected to the ultrasonic surface rolling process: the role of the gradient structure. Int J Fatigue. 2023;167:107383.
- 48. Liu D, Liu D, Zhang X, et al. Plain fatigue and fretting fatigue behaviors of 17–4PH steel subjected to ultrasonic surface rolling process: a comparative study. Surface Coat Technol.2020;399:126196.
- 49. Pan X, Zhou L, Wang C, et al. Microstructure and residual stress modulation of 7075 aluminum alloy for improving fatigue performance by laser shock peening. Int J Mach Tools Manuf.2023;184:103979.
- 50. Kattoura M, Telang A, Mannava SR, et al. Effect of Ultrasonic Nanocrystal Surface Modification on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy. Mater Sci Eng A.2018;711:364–77.
- 51. Dorman M, Toparli MB, Smyth N, et al. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects. Mater Sci Eng A.2012;548:142–51.
- 52. Wang DQQ, Wang Q, Zhu YK, et al. Evaluating the fatigue cracking risk of surface strengthened 50CrMnMoVNb springsteel with abnormal life time distribution. Mater Sci Eng A.2018;732:192–204.
- 53. Tiryakioğlu M, Robinson JS, Salazar-Guapuriche MA, et al. Hardness–strength relationships in the aluminum alloy 7010. Mater SciEng A. 2015;631:196–200.
- 54. Bao Y. Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios. Eng Fract Mech.2005;72(4):505–22.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc2e228d-9c36-4d65-b694-16030100b950
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.