PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified virtual blade method for propeller modelling

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The emergence of large, propeller-based aircraft has revived interest in propeller design and optimization with the use of numerical methods. The flow complexity and computational time necessary to solve complicated flow patterns trailing behind rotating blades, created a need for faster than fully resolved 3D CFD, yet comparably accurate methods for validating multiple design points in shorter time. Improved Virtual Blade Method (VBM) for 2-bladed propeller, including method implementation, analysis and validation against 3D numerical and experimental data is presented. The study introduces adjustments to the original method, accounting for differences between VBM and fully resolved numerical models. These modifications prove to increase the model accuracy for the propeller under consideration and could potentially be applied for different blade configurations as well. The modified Virtual Blade Method allows one to compute the propeller performance with comparable accuracy to 3D CFD computation using only 10% of time needed for one computational point.
Słowa kluczowe
EN
PL
Rocznik
Strony
603--617
Opis fizyczny
Bibliogr. 10 poz., il. kolor., wykr.
Twórcy
autor
  • Institute of Turbomachinery, Lodz University of Technology, Lodz, Poland
autor
  • Institute of Turbomachinery, Lodz University of Technology, Lodz, Poland
  • Institute of Turbomachinery, Lodz University of Technology, Lodz, Poland
autor
  • Institute of Turbomachinery, Lodz University of Technology, Lodz, Poland
Bibliografia
  • [1] Glauert H.: Airplane propellers, in W. F. Durand (Ed.), Aerodynamic theory, Berlin: Springer, IV, Division L, 169-360, 1935.
  • [2] Wu T. Y.: Flow through a heavily loaded actuator disc. Schiffstechnik, 9, 134-138, 1962.
  • [3] Conway J. T.: Exact actuator disk solutions for nonuniform heavy loading and slipstream contraction, J FLUID MECH, 365, 235-267, 1998.
  • [4] Breslin J. P., & Andersen P.: Hydrodynamics of ship propellers, Cambridge University Press, 1994.
  • [5] Le Chuiton, F.: Actuator disc modelling for helicopter rotors, AEROSP SCI TECH-NOL, 8, 4, 285-297, 2004.
  • [6] Wahono, S.: Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM, No. DSTO-TR-2931, DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION FISHERMANS BEND (AUSTRALIA) AEROSPACE DIV, 2013.
  • [7] Zori, L. A. J., Rajagopalan, R. G.: Navier-Stokes Calculation of Rotor-Airframe Interaction in Forward Flight, J AM HELICOPTER SOC, 40, 1995.
  • [8] Yang, Z. et. al.: Recent improvements to a hybrid method for rotors in forward flight, J AIRCRAFT, 39, 5, 804-812, 2002.
  • [9] Leishman, G. J.: Principles of helicopter aerodynamics with CD extra, Cambridge University Press, 2006.
  • [10] Stajuda, M. et al.: Development of a CFD model for propeller simulation, Mechanics and Mechanical Engineering, 20, 4, 579-593, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc27880d-1586-4dec-8d62-d8727190168b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.