PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrocatalytic properties of Ni-Cu structures fabricated by electrodeposition of Cu on Ni cones

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ni-Cu alloys are a suitable candidate as a catalyst in Hydrogen Evolution Reaction due to their catalytic performance and good stability. To enhance this activity more, the active surface area of the material should be enhanced. It is commonly achieved by the synthesis of metals and alloys in the form of nanostructures. In this work, Ni cones fabricated by the one-step method were applied as a substrate for the deposition of thin Cu layers. Then, these materials were annealed in an ambient atmosphere to obtain Ni-Cu structures. The investigation of changes in morphology and chemical composition, as well as roughness and wettability before and after the annealing process was performed. Moreover, the measurements of catalytic properties were carried out in 1 M NaOH. The values of the Tafel slope and the electrochemical active surface area were studied. The proposed method can be successfully applied to fabricate structures of other alloys for the desired properties.
Rocznik
Strony
art. no. e138, 2024
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Faculty of Non‑Ferrous‑Metals, AGH University of Krakow, al. Mickiewicza 30, 30‑059 Krakow, Poland
  • Faculty of Non‑Ferrous‑Metals, AGH University of Krakow, al. Mickiewicza 30, 30‑059 Krakow, Poland
  • Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
  • Faculty of Non‑Ferrous‑Metals, AGH University of Krakow, al. Mickiewicza 30, 30‑059 Krakow, Poland
  • Faculty of Non‑Ferrous‑Metals, AGH University of Krakow, al. Mickiewicza 30, 30‑059 Krakow, Poland
  • Academic Centre for Materials and Nanotechnology, AGH University of Krakow, al. Mickiewicza 30, 30‑059 Krakow, Poland
  • Faculty of Non‑Ferrous‑Metals, AGH University of Krakow, al. Mickiewicza 30, 30‑059 Krakow, Poland
Bibliografia
  • 1. Ali N, Bilal M, Khan A, Ali F, Khan H, Khan HA, Iqbal HMN. Fabrication strategies for functionalized nanomaterials. In: Nanomaterials: synthesis, characterization, hazards and safety. Elsevier; 2021. pp. 55-95. https://doi.org/10.1016/B978-0-12-823823-3.00010-0.
  • 2. Skibinska K, Kolczyk-Siedlecka K, Kutyla D, Jedraczka A, Leszczyńska-Madej B, Marzec MM, Zabinski P. Electrocatalytic properties of Co nanoconical structured electrodes produced by a one-step or two-step method. Catalysts. 2021;11:544. https://doi.org/10.3390/catal11050544.
  • 3. Zabinski PR, Meguro S, Asami K, Hashimoto K. Electrodeposited Co-Ni-Fe-C alloys for hydrogen evolution in a hot 8 kmol・m-3NaOH. Mater Trans. 2006;47:2860-6. https://doi.org/10.2320/matertrans.47.2860.
  • 4. Zabiński PR, Franczak A, Kowalik R. Electrocatalytically active Ni-Re binary alloys electrodeposited with superimposed magnetic field. Arch Metall Mater. 2012;57:495-501. https://doi.org/10.2478/v10172-012-0051-2.
  • 5. Chu S, Chen W, Chen G, Huang J, Zhang R, Song C, Wang X, Li C, Ostrikov K. Holey Ni-Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution. Appl Catal B Environ. 2019;243:537-45. https://doi.org/10.1016/j.apcatb.2018.10.063.
  • 6. Sarac U, Oksuzoğlu RM, Baykul MC. Deposition potential dependence of composition, microstructure, and surface morphology of electrodeposited Ni-Cu alloy films. J Mater Sci Mater Electron. 2012;23:2110-6. https://doi.org/10.1007/s10854-012-0709-6.
  • 7. Goranova D, Avdeev G, Rashkov R. Electrodeposition and characterization of Ni-Cu alloys. Surf Coat Technol. 2014;240:204-10. https://doi.org/10.1016/j.surfcoat.2013.12.014.
  • 8. Solmaz R, Doner A, Kardaş G. Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction. Electrochem Commun. 2008;10:1909-11. https://doi.org/10.1016/j.elecom.2008.10.011.
  • 9. Solmaz R, Doner A, Kardaş G. The stability of hydrogen evolution activity and corrosion behavior of NiCu coatings with long-term electrolysis in alkaline solution. Int J Hydrogen Energy. 2009;34:2089-94. https://doi.org/10.1016/j.ijhydene.2009.01.007.
  • 10. Lo Faro M, Frontera P, Antonucci P, Arico AS. Ni-Cu based catalysts prepared by two different methods and their catalytic activity toward the ATR of methane. Chem Eng Res Des. 2015;93:269-77. https://doi.org/10.1016/j.cherd.2014.05.014.
  • 11. He S, Liu Y, Zhan H, Guan L. Direct thermal annealing synthesis of ordered Pt alloy nanoparticles coated with a thin N-doped carbon shell for the oxygen reduction reaction. ACS Catal. 2021;11:9355-65. https://doi.org/10.1021/acscatal.1c02434.
  • 12. Zeng W-J, Tong L, Liu J, Liang H-W. Annealing-temperature-dependent relation between alloying degree, particle size, and fuel cell performance of PtCo catalysts. J Electroanal Chem. 2022;922:116728. https://doi.org/10.1016/j.jelechem.2022.116728.
  • 13. DuPont JN, Lippold JC, Kiser SD. Alloying additions, phase diagrams, and phase stability. In: Welding metallurgy and weldability of nickel‐base alloy.Wiley; 2009. pp. 15-45. https://doi.org/10.1002/9780470500262.ch2.
  • 14. Balakrishna Bhat T, Arunachalam VS. Strengthening mechanisms in alloys: a review. Proc Indian Acad Sci Sect C Eng Sci. 1980;3:275-96. https://doi.org/10.1007/BF02842915.
  • 15. Foiles SM. Calculation of grain-boundary segregation in Ni-Cu alloys. Phys Rev B. 1989;40:11502-6. https://doi.org/10.1103/PhysRevB.40.11502.
  • 16. Divinski S, Ribbe J, Schmitz G, Herzig C. Grain boundary diffusion and segregation of Ni in Cu. Acta Mater. 2007;55:3337-46. https://doi.org/10.1016/j.actamat.2007.01.032.
  • 17. Emeis F, Peterlechner M, Divinski SV, Wilde G. Grain boundary engineering parameters for ultrafine grained microstructures: proof of principles by a systematic composition variation in the Cu-Ni system. Acta Mater. 2018;150:262-72. https://doi.org/10.1016/j.actamat.2018.02.054.
  • 18. Kolobov YR, Grabovetskaya GP, Ivanov MB, Zhilyaev AP, Valiev RZ. Grain boundary diffusion characteristics of nanostructured nickel. Scr Mater. 2001;44:873-8. https://doi.org/10.1016/S1359-6462(00)00699-0.
  • 19. Baskaran I, Sankara Narayanan TSN, Stephen A. Pulsed electro-deposition of nanocrystalline Cu-Ni alloy films and evaluation of their characteristic properties. Mater Lett. 2006;60:1990-5. https://doi.org/10.1016/j.matlet.2005.12.065.
  • 20. Barroso-Quiroga MM, Castro-Luna AE. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane. Int J Hydrogen Energy. 2010;35:6052-6. https://doi.org/10.1016/j.ijhydene.2009.12.073.
  • 21. Liu J, Fang X, Zhu C, Xing X, Cui G, Li Z. Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: a comprehensive review. Colloids Surf A Physicochem Eng Asp. 2020;607:125498. https://doi.org/10.1016/j.colsurfa.2020.125498.
  • 22. Lee JM, Jung KK, Lee SH, Ko JS. One-step fabrication of nickel nanocones by electrodeposition using CaCl2・2H2O as capping reagent. Appl Surf Sci. 2016;369:163-9. https://doi.org/10.1016/j.apsusc.2016.02.006.
  • 23. Barati Darband G, Aliofkhazraei M, Sabour A. Nickel nanocones as efficient and stable catalyst for electrochemical hydrogen evolution reaction. Int J Hydrogen Energy. 2017;42:14560-5. https://doi.org/10.1016/j.ijhydene.2017.04.120.
  • 24. Jin S, Bierman MJ, Morin SA. A new twist on nanowire formation: screw-dislocation-driven growth of nanowires and nanotubes. J Phys Chem Lett. 2010;1:1472-80. https://doi.org/10.1021/jz100288z.
  • 25. Zou R, Zhou Y, Wang J, Li Y, Gu L, Wang Y. Electrochemical approach towards the controllable synthesis of nickel nanocones based on the screw dislocation. Appl Nanosci. 2020;10:1625-38. https://doi.org/10.1007/s13204-019-01233-9.
  • 26. Meng F, Morin SA, Forticaux A, Jin S. Screw dislocation driven growth of nanomaterials. Acc Chem Res. 2013;46:1616-26. https://doi.org/10.1021/ar400003q.
  • 27. Hashemzadeh M, Raeissi K, Ashrafizadeh F, Khorsand S. Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings. Surf Coatings Technol. 2015;283:318-28. https://doi.org/10.1016/j.surfcoat.2015.11.008.
  • 28. Rahimi E, Rafsanjani-Abbasi A, Imani A, Kiani Rashid AR, Hosseinpour S, Davoodi A. Synergistic effect of a crystal modifier and screw dislocation step defects on the formation mechanism of nickel micro-nanocone. Mater Lett. 2019;245:68-72. https://doi.org/10.1016/j.matlet.2019.02.093.
  • 29. Skibińska K, Huang M, Mutschke G, Eckert K, Włoch G, Wojnicki M, Żabiński P. On the electrodeposition of conically nano-structured nickel layers assisted by a capping agent. J Electroanal Chem. 2022;904:115935. https://doi.org/10.1016/j.jelechem.2021.115935.
  • 30. Huang M, Eckert K, Mutschke G. Magnetic-field-assisted electrodeposition of metal to obtain conically structured ferromagnetic layers. Electrochim Acta. 2021;365:137374. https://doi.org/10.1016/j.electacta.2020.137374.
  • 31. Skibińska K, Kutyła D, Yang X, Krause L, Marzec MM, Żabiński P. Rhodium-decorated nanoconical nickel electrode synthesis and characterization as an electrochemical active cathodic material for hydrogen production. Appl Surf Sci. 2022;592:153326. https://doi.org/10.1016/j.apsusc.2022.153326.
  • 32. Kutyła D, Nakajima K, Fukumoto M, Wojnicki M, Kołczyk-Siedlecka K. Electrocatalytic performance of ethanol oxidation on Ni and Ni/Pd surface-decorated porous structures obtained by molten salts deposition/dissolution of Al-Ni alloys. Int J Mol Sci. 2023;24:3836. https://doi.org/10.3390/ijms24043836.
  • 33. Pham AV, Fang TH, Tran AS, Chen TH. Effect of annealing and deposition of Cu atoms on Ni trench to interface formation and growth mechanisms of Cu coating. Superlattices Microstruct. 2020;139:106402. https://doi.org/10.1016/j.spmi.2020.106402.
  • 34. Tsong TT, Ng YS, McLane SB. Surface segregation of Ni-Cu alloy in nitrogen and oxygen: an atom-probe field-ion microscope study. J Appl Phys. 1980;51:6189-91. https://doi.org/10.1063/1.327652.
  • 35. Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal. 2009;41:324-32. https://doi.org/10.1002/sia.3026.
  • 36. Biesinger MC, Lau LWM, Gerson AR, Smart RSC. The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys Chem Chem Phys. 2012;14:2434. https://doi.org/10.1039/c2cp22419d.
  • 37. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011;257:2717-30. https://doi.org/10.1016/J.APSUSC.2010.10.051.
  • 38. Healy AMSPC, Myhra S. XPS studies of planar four-coordinate copper(II) and copper(III) complexes. Jpn J Appl Phys. 1987;26:L1884-7.
  • 39. Biesinger MC. Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal. 2017;49:1325-34. https://doi.org/10.1002/sia.6239.
  • 40. Rasmussen AA, Jensen JAD, Horsewell A, Somers MAJ. Microstructure in electrodeposited copper layers; the role of the substrate. Electrochim Acta. 2001;47:67-74. https://doi.org/10.1016/S0013-4686(01)00583-7.
  • 41. Wan Y, Zhang Y, Wang X, Wang Q. Electrochemical formation and reduction of copper oxide nanostructures in alkaline media. Electrochem Commun. 2013;36:99-102. https://doi.org/10.1016/j.elecom.2013.09.026.
  • 42. Zhu Y, Liu T, Li L, Song S, Ding R. Nickel-based electrodes as catalysts for hydrogen evolution reaction in alkaline media. Ionics. 2018;24:1121-7. https://doi.org/10.1007/s11581-017-2270-z.
  • 43. Elsharkawy S, Kutyła D, Zabinski P. The influence of the magnetic field on Ni thin film preparation by electrodeposition method and its electrocatalytic activity towards hydrogen evolution reaction. Coatings. 2023;13:1816. https://doi.org/10.3390/coatings13101816.
  • 44. Gao MY, Yang C, Zhang QB, Yu YW, Hua YX, Li Y, Dong P. Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution. Electrochim Acta. 2016;215:609-16. https://doi.org/10.1016/j.electacta.2016.08.145.
  • 45. Skibinska K, Elsharkawy S, Kołczyk-Siedlecka K, Kutyła D, Żabinski P. Influence of the applied external magnetic field on the deposition of Ni-Cu alloys. Metals. 2024;14:1-15.
  • 46. Wang N, Hang T, Chu D, Li M. Three-dimensional hierarchical nanostructured Cu/Ni-Co coating electrode for hydrogen evolution reaction in alkaline media. Nano Micro Lett. 2015;7:347-52. https://doi.org/10.1007/s40820-015-0049-1.
  • 47. Hamidah I, Solehudin A, Hamdani A, Hasanah L, Khairurrijal K, Kurniawan T, Mamat R, Maryanti R, Nandiyanto ABD, Hammouti B. Corrosion of copper alloys in KOH, NaOH, NaCl, and HCl electrolyte solutions and its impact to the mechanical properties. Alex Eng J. 2021;60:2235-43. https://doi.org/10.1016/j.aej.2020.12.027.
  • 48. Skibińska K, Elsharkawy S, Kula A, Kutyła D, Żabiński P. Influence of substrate preparation on the catalytic activity of conical Ni catalysts. Coatings. 2023;13:2067. https://doi.org/10.3390/coatings13122067.
  • 49. Skibińska K, Kornaus K, Yang X, Kutyła D, Wojnicki M, Żabiński P. One-step synthesis of the hydrophobic conical Co-Fe structures - the comparison of their active areas and electrocatalytic properties. Electrochim Acta. 2022;415:140127. https://doi.org/10.1016/j.electacta.2022.140127.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc243697-a802-467f-b143-c41562697305
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.