PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Device for Measuring the Rotational Speed of a Chain Sprocket of a Petrol Chainsaw

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The procedure for determining the frequency-weighted RMS values of vibration accelerations in the case of petrol chainsaws proposes equal time shares of three operation modes of the chainsaw. In order to assess the actual operator’s vibration exposure, it is necessary to precisely determine the above-mentioned shares. In real-life conditions operation of chainsaws is characterized by frequent and significant rotational speed changes depending on the operation mode. Therefore, a prototype of dedicated device for measuring the rotational speed of a chain sprocket was developed. The article presents development requirements, encountered problems and their solutions, the prototype itself and functional test results.
Twórcy
  • Faculty of Mechanical Engineering, Institute of Applied Mechanics, Poznan University of Technology, Piotrowo 3 st, 60–965 Poznań, Poland
  • Faculty of Mechanical Engineering, Institute of Applied Mechanics, Poznan University of Technology, Piotrowo 3 st, 60–965 Poznań, Poland
  • Faculty of Mechanical Engineering, Institute of Applied Mechanics, Poznan University of Technology, Piotrowo 3 st, 60–965 Poznań, Poland
Bibliografia
  • 1. Kováč J., Krilek J., Dado M., Beňo P. Investigating the Influence of Design Factors on Noise and Vibrations in the case of Chainsaws for Forestry Work. FME Transactions. 2018;46(4):513–519.
  • 2. Matache M.G., Munteanu M., Dumitru D. M., Epure M. Evaluation of hand transmitted chainsaw vibrations during wood cutting. E3S Web of Conferences. 2020;180(03013):1–7.
  • 3. Landekić M., Bačić M., Pandur Z., Šušnjar M. Vibration Levels of Used Chainsaws. Forests. 2020;11(249):1–10.
  • 4. DYREKTYWA 2006/42/WE PARLAMENTU EUROPEJSKIEGO I RADY z dnia 17 maja 2006 r. w sprawie maszyn, zmieniająca dyrektywę 95/16/WE
  • 5. ISO 7505:1986 Forestry machinery – Chain saw – Measurement of hand-transmitted vibration.
  • 6. ISO 22867:2011 Forestry and gardening machinery – Vibration test code for portable handheld machines with internal combustion engine–Vibration at the handle.
  • 7. Rukat W., Jakubek B. The influence of the cutting tooth design and wear of a saw chain on the vibration level of a chainsaw. Vibrations in Physical Systems. 2017;28(2017009):1–8.
  • 8. Wójcik K. Analysis of processing operation time and it’s percent share in timber harvesting with the chain saws. Agricultural Engineering. 2007;50:71–77.
  • 9. Neri F., Laschi A., Foderi C., Fabiano F., Bertuzzi L., Marchi E. Determining Noise and Vibration Exposure in Conifer Cross-Cutting Operations by Using LiIon Batteries and Electric Chainsaws. Forests. 2018;9(501):1–13.
  • 10. Rukat W., Barczewski R., Jakubek B., Wróbel M. The comparison of vibro-acoustic impact of chainsaw with electric and combustion drives. MATEC Web of Conferences. 2018;182(02020):1–7.
  • 11. Rukat W., Jakubek B., Barczewski R., Wróbel M. The influence of the direction of wood cutting on the vibration and noise of chainsaws. Tehnički vjesnik. 2020;27(6):1879–1886.
  • 12. Service and repair manual for the Stihl MS 181 saw – version 2015.
  • 13. Gendek A. Research of clutch temperature increase of chain saw (in Polish). Technika Rolnicza Ogrodnicza Leśna. 2011;5:5–7.
  • 14. Gendek A. The method of measuring the rotational speed of the chainsaw elements (in Polish). Przegląd Techniki Rolniczej i Leśnej. 1999;8:20–23.
  • 15. Gendek A., Kociołek M. Stand for measuring rotational speeds and slips in the coupling of a chainsaw (in Polish). Technika Rolnicza Ogrodnicza Leśna. 2006;8:23–25.
  • 16. Zheng Z., Zhang R.J. Classification Research of Rotation Speed Measurement. Applied Mechanics and Materials. 2014;457–458:998–1003.
  • 17. Safiullin R. A., Yangirov I.F. Tachogenerator for processing Signals and Data from Electrical Machine. 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russia 2020, 1–5,
  • 18. Ma Z.Q., Zhang R., Kang D.L., Yang W. A Research of High Precision Rotational Speed Measurement System Based on Infrared Sensor and Microcontroller. Applied Mechanics and Materials. 2013;278–280:680–683.
  • 19. Kędzierski Ł. High speed imaging method for rotational speed calibration. Przegląd elektrotechniczny (in Polish). 2019;5:184–187.
  • 20. Li L., Hu H., Qin Y., Tang K. Digital Approach to Rotational Speed Measurement Using an Electrostatic Sensor. Sensors (Basel). 2019;19(11):2540.
  • 21. Wang L., Yan Y., Hu Y., Qian X. Rotational Speed Measurement Using Single and Dual Electrostatic Sensors. IEEE Sensors Journal. 2015;15(3): 1784–1793.
  • 22. Jurevic M., Krsulja M., Katalinic B., Car Z., Sikulec L., Automatic Measurement of Rotational Speeds and Lathe Maintenance. Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium. 2012;23(1):775–778.
  • 23. Wu C., Ding H., Han L. Design of a Centrifugal Force-Based Speed Sensor for Downhole Turbodrills. Journal of Sensors. 2018:1–12.
  • 24. Hsiao K., Nangeroni P., Huber M., Saxena A., Ng A.Y. Reactive Grasping Using Optical Proximity Sensors. IEEE International Conference on Robotics and Automation. Kobe, Japan 2009, 2098–2105.
  • 25. Kazanskiy N.L., Khonina S.N., Butt M.A., Kaźmierczak A., Piramidowicz R. State-of-the-Art Optical Devices for Biomedical Sensing Applications – A Review. Electronics. 2021;10(8):973.
  • 26. Karbowniczek M. Zbliżeniowe czujniki optyczne w praktyce inżynierskiej (in Polish). Elektronika Praktyczna. 2015; 4:135–139.
  • 27. KAMAN Measuring and Memory Systems. Inductive Technology Handbook; 2008.
  • 28. Zhao Y., Fang Y., Yang J., Zhang W., Ge X., Cao S., Xia X. An Implementation Method for an Inductive Proximity Sensor with an Attenuation Coefficient of 1. Energies. 2020;13:6482.
  • 29. Ripka P., Blažek J., Mirzaei M., Lipovský P., Šmelko M., Draganová K. Inductive Position and Speed Sensors. Sensors. 2020;20:65.
  • 30. Lozanova S., Ivanov A., Roumenin C. A Novel Three-Axis Hall Magnetic Sensor. Procedia Engineering. 2011;25:539–542.
  • 31. Popovic R.S., Boero G., Besse P.A. Micro-Hall Magnetic Sensors: Physics, Technologies and Applications. In: Yurish S.Y., Gomes M.T.S.R. (eds) Smart Sensors and MEMS. NATO Science Series. 2004; 181:229–253.
  • 32. Diodes Incorporated. Linear Hall-effect IC AH49E. BCD Semiconductor Manufacturing Limited; 2009.
  • 33. STMicroelectronics. STM32F103x8, STM32F103xB datasheet; 2015
  • 34. Paprocki K. Mikrokontrolery STM32 w praktyce (in Polish). BTC; 2009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc17d3c4-f527-4d0a-aa5e-c22c68735efe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.