Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Włókna naturalne do zastosowań tekstylnych otrzymywane z kory gałęzi morwy
Języki publikacji
Abstrakty
Fibers with low gum content were extracted from the bark of mulberry branches by a combination of bacteria and peroxide treatments. The bark of mulberry branches, with 30% cellulose, is a copious and inexpensive source of natural fibers. However, fibers extracted by microwave, enzyme or alkali had a high gum content (15.5% for hemicellulose and 8.6% for lignin), which rendered them difficult to be made into high- value textiles. In this research, strains with high polygalacturonase activities and subsequent hydrogen peroxide decreased the hemicellulose content to 2.5% and lignin content to 2.4%. Mulberry fibers in our study could be spun into yarns with a fineness of 18.2 tex. Compared to flax yarns, mulberry fiber yarns had a tenacity 20% higher, an elongation 18% higher and an unevenness 30% lower. Cotton/mulberry fiber fabrics had softer and smoother hand than cotton/flax fabrics. Overall, the fibers in our study show better potential for industrial textile applications than those in previous studies.
Kora gałęzi morwy jest bogatym i niedrogim źródłem włókien naturalnych. W pracy przedstawiono proces otrzymywania włókien z kory morwy z wykorzystaniem szczepów bakteryjnych oraz nadtlenku wodoru, co zmniejszyło zawartość hemicelulozy do 2,5% i zawartości ligniny do 2,4%. W porównaniu do przędz lnianych, przędze z włókien morwy wykazywały o 20% wyższą wytrzymałość, o 18% wyższe wydłużenie i o 30% niższą nierównomierność. Tkaniny bawełniane z dodatkiem morwy miały bardziej miękki i gładszy chwyt, niż tkaniny bawełniane z dodatkiem lnu. Stwierdzono, że metoda pozyskiwania włókien z kory morwy przy zastosowaniu bakterii i nadtlenku wodoru może być stosowana do wyodrębniania włókien morwowych w celu produkcji wyrobów o wysokiej wartości i szerokim spektrum możliwości zastosowań przemysłowych.
Czasopismo
Rocznik
Strony
20--25
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- School of Textile and Clothing, Nantong University, Nantong 226019, P.R.China
autor
- School of Textile and Clothing, Nantong University, Nantong 226019, P.R.China
autor
- School of Textile and Clothing, Nantong University, Nantong 226019, P.R.China
autor
- School of Textile and Clothing, Nantong University, Nantong 226019, P.R.China
autor
- School of Textile and Clothing, Nantong University, Nantong 226019, P.R.China
autor
- School of Textile and Clothing, Nantong University, Nantong 226019, P.R.China
Bibliografia
- 1. Liu L, Cao J, Huang J, Cai Y and Yao J. Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresource Technology 2010; 101, 9: 3268-3273.
- 2. Du J, He ZD, Jiang RW, Ye WC, Xu HX and But PP. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry 2003; 62, 8: 1235-1238.
- 3. Li RJ, Fei JM, Cai YR, Li YF, Feng JQ and Yao JM. Cellulose whiskers extracta - ed from mulberry: a novel biomass production. Carbohydrate Polymers 2009; 76, 1: 94-99.
- 4. Liu L, Jiang T and Yao J. A two-step chemical process for the extraction of cellulose fiber and pectin from mulberry branch bark efficiently. Journal of Polymers and the Environment 2011; 19, 3: 568-573.
- 5. Jang YS, Amna T, Hassan MS, Kim HC, Kim JH. Baik SH, Khil MS. Nanotitania/mulberry fibers as novel textile with anti-yellowing and intrinsic antimicrobial properties. Ceramics International 2015; 41, 5: 6274-6280.
- 6. Qu C and Wang S. Macro-micro structure, antibacterial activity, and physico-mechanical properties of the mulberry bast fibers. Fibers and Polymers 2011; 12, 4: 471-477.
- 7. Qu C, Wang S, Wang K and Ma Q. Preparation and antibacterial property of the mulberry based textiles. Fibers and Polymers 2014; 15, 3: 498-503.
- 8. Park TY and Lee SG. A study on coarse Hanji yarn manufacturing and properties of the Hanji fabric. Fibers and Polymers 2013; 14, 2: 311-315.
- 9. Wu HL, Li DM, Wu CC, Yang PP and Jing XQ. Research on the structure and properties of mulberry fiber. Journal of Donghua University (Eng. Ed.) 2008; 25, 2: 153-158.
- 10. Brühlmann F, Leupin M, Erismann KH and Fiechter A. Enzymatic degumming of ramie bast fibers. Journal of Biotechnology 2000; 76, 1: 43-50.
- 11. Das B, Chakrabarti K, Ghosh S, Majumu - dar B, Tripathi S and Chakraborty A. Efa fect of efficient pectinolytic bacterial isolates on retting and fibre quality of jute. Industrial Crops and Products 2012; 36, 1: 415-419.
- 12. Zheng L, Du Y and Zhang J. Degumming of ramie fibers by alkalophilic bacteria and their polysaccharide-degrading enzymes. Bioresource Technology 2001; 78, 1: 89-94.
- 13. Cao J, Zheng L and Chen S. Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enzyme and Microbial Technology 1992; 14, 12: 1013-1016.
- 14. Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS and Hoondal GS. AppliH - cation of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibres. Process Biochemistry 2001; 36, 8: 803-807.
- 15. Jacob N, Niladevi KN, Anisha GS and Prema P. Hydrolysis of pectin: an enzymatic approach and its application inbanana fiber processing. Microbiological Research 2008; 163, 5: 538-544.
- 16. Kobayashi T, Higaki N, Suzumatsu A, Sawada K, Hagihara H, Kawai S and Ito S. Purifcation and properties of a high-molecular-weight, alkaline exopolygalacturonase from a strain of Bacillus. Enzyme and Microbial Technology 2001; 29, 1: 70-75.
- 17. Bailey MJ, Biely P and Poutanen K. InB - terlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology 1992; 23, 3: 257-270.
- 18. Miller GL, Blum R, Glennon WE and BurM - ton AL. Measurement of carboxymethylcellulase activity. Analytical Biochemistry 1960; 1, 2: 127-132.
- 19. Dong Z, Hou X, Sun F, Zhang L and Yang Y. Textile grade long natural cellulose fibers from bark of cotton stalks using steam explosion as a pretreatment. Cellulose 2014; 21, 5: 3851-3860.
- 20. Yim KY, Kan CW. A Comparison Study of Fabric Objective Measurement (FOM) Using KES-FB and PhabrOmeter System on Warp Knitted Fabrics Handle–Smoothness, Stiffness and Softness. World Academy of Science, Engineering and Technology. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 2014; 8, 8: 789-792.
- 21. Reddy N and Yang Y. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technology 2009; 100, 14:3563-3569.
- 22. French A. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014; 21, 2: 885-896.
- 23. Mora´n JI, Alvarez VA, Cyras VP, Va´zquez A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 2008; 15, 1: 149-159.
- 24. Jayaramudu J, Guduri BR and Rajulu AV. Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydrate Polymers 2010; 79, 4: 847-851.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc14e457-0d5d-4b1f-883b-3451fffd41ad