PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conditions of synthesis and structure of metakaolin-based geopolymers: application as heavy metal cation sorbent

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents the synthesis of geopolymer materials designed for application as self-supporting zeolite membranes. For this purpose, batches of metakaolin activated with sodium silicate and sodium hydroxide were used. During synthesis, it was assumed that low temperatures are sufficient to receive the membranes. The composition of raw materials and temperature of activation were selected in such a way so as to correspond to the basic chemical compositions and synthesis conditions of sodalite as well as zeolites A and X. Additionally, the structural and textural properties of geopolymers were determined. The results show that it is possible to obtain composite zeolite structures in an amorphous matrix. A number of synthesized materials were used in the sorption of selected heavy metal cations (Ni2+ , Zn2+ , Pb2+  and Cd2+ ). It was concluded that the investigated geopolymerization process may be applied to obtain a material with potential use as a heavy metal sorbent.
Rocznik
Strony
103--109
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Davidovits, J. (1994). Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement. J. Mater. Educ. 16(2–3), 91–139.
  • 2. Yun-Ming, L., Cheng-Yong, H., Abdullah, M. M. A. B. & Hussin, K. (2016). Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci. 83, 595–629. DOI: 10.1016/j.pmatsci.2016.08.002.
  • 3. Ilic, B. R., Mitroviv, A. A. & Milicic, L. R. (2010). Thermal treatment of kaolin clay to obtain metakaolin. Hem. Ind. 64 (4), 351–356. DOI: 10.2298/HEMIND100322014I.
  • 4. Liew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M. & Heah, C. Y. (2012). Processing and characterization of calcined kaolin cement powder. Constr. Build. Mater. 30, 794–802. DOI: 10.1016/j.conbuildmat.2011.12.079.
  • 5. San Cristóbal, A. G., Castelló, R., Martín Luengo, M. A. & Vizcayno, C. (2010). Zeolites prepared from calcined and mechanically modified kaolins: a comparative study. Appl. Clay Sci. 49(3), 239–246. DOI: 10.1016/j.clay.2010.05.012.
  • 6. Xu, H. & van Deventer, J. S. J. (2002). Geopolymerization of multiple minerals. Miner. Eng. 15(12), 1131–1139. DOI: 10.1016/S0892-6875(02)00255-8.
  • 7. Xu, H. & van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59(3), 247–266. DOI: 10.1016/S0301-7516(99)00074-5.
  • 8. Pacheco-Torgal, F., Castro-Gomes, J. P. & Jalali, S. (2008). Alkali-activated binders: a review. Part 2. About materials and binders manufacture. J. Constr. Build. Mater. 22(7), 1315–1322. DOI: 10.1016/j.conbuildmat.2007.03.019.
  • 9. Palomo, A., Grutzek, M. W. & Blanco-Varela, M. T. (1999). Alkali-activated fly ashes. A cement for the future. Cem. Concr. Res. 29(8), 1323–1329. DOI: 10.1016/S0008-8846(98)00243-9.
  • 10. Alonso, S. & Palomo, A. (2001). Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator, concentration and solids ratio. Mater. Lett. 47(1–2), 55–62. DOI: 10.1016/S0167-577X(00)00212-3.
  • 11. Alonso, S. & Palomo, A. (2001). Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cem. Concr. Res. 31(1), 25–30. DOI: 10.1016/S0008-8846(00)00435-X.
  • 12. Davidovits, J. (2015). Geopolymer Chemistry and Applications (4th ed.). Saint-Quentin, France: Institut Géopolymère
  • 13. Provis, J. L. & van Deventer, J. S. J. (2009). Geopolymers: Structure, processing, properties and industrial applications (1st ed.). Abingdon, UK: Woodhead Publishing Limited
  • 14. Fernandez-Jimenez, A. & Palomo, A. (2005). Chemical durability of geopolymers. In Provis, J. L. & van Deventer (Eds.), Geopolymers: Structure, processing, properties and industrial applications (pp. 167–193). Abingdon, UK: Woodhead Publishing Limited.
  • 15. Zheng, L., Wang, W. & Shi, Y. (2010). The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79(6), 665–671. DOI: 10.1016/j.chemosphere.2010.02.018.
  • 16. Ge, Y., Cui, X., Kong, Y., Li, Z., He, Y. & Zhou, Q. (2015). Porous geopolymeric spheres for removal of Cu(II) from aqueous solution: Synthesis and evaluation. J. Hazard. Mater. 283, 244–251. DOI: 10.1016/j.jhazmat.2014.09.038.
  • 17. Li, L., Wang, S. & Zhu, Z. (2006). Geopolymeric adsorbents from fly ash for dye removal from aqueous solution. J. Colloid. Interf. Sci. 300(1), 52–59. DOI: 10.1016/j.jcis.2006.03.062
  • 18. Zhang, J., Provis, J. L., Feng, D. & Van Deventer, J. S. J. (2008a). Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J. Hazard. Mater. 157(2–3), 587–598. DOI: 10.1016/j.jhazmat.2008.01.053.
  • 19. Yousef, R. I., El-Eswed, B., Alshaaer, M., Khalili, F. & Khoury, H. (2009). The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products. J. Hazard. Mater. 165(1–3), 379–387. DOI: 10.1016/j.jhazmat.2008.10.004.
  • 20. López, F.J., Sugita, S., Tagaya, M. & Kobayashi, T. (2014). Metakaolin-Based Geopolymers for Targeted Adsorbents to Heavy Metal Ion Separation. J. Mater. Sci. Chem. Eng. 2, 16–27. DOI: 10.4236/msce.2014.27002.
  • 21. De Silva, P. & Sagoe-Crenstil, K. (2008). The effect of Al2O3 and SiO2 on setting and hardening of Na2O-Al2O3-SiO2-H2O geopolymer system. J. Aust. Ceram. Soc. 44(1), 39–46.
  • 22. Davidovits, J. (1982). U.S. Patent No. 4,349,386. United States: U.S. Patent and Trademark Office.
  • 23. Kenne Diffo, B. B., Elimbi, A. Cyr, M., Dika Manga, J. & Tchakoute Kouamo, H. (2015). Effect of the rate of calcination of kaolin on the properties of metakaolin-based geo-polymers. J. Asian Ceram. Soc. 3(1), 130–138. DOI: 10.1016/j.jascer.2014.12.003.
  • 24. Król, M., Minkiewicz, J. & Mozgawa, W. (2016). IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. J. Mol. Struct. 1126, 200–206. DOI: 10.1016/j.molstruc.2016.02.027.
  • 25. Zuhua, Z., Xiao, Y., Huajun, Z. & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Appl. Clay Sci. 43(2), 218–223. DOI: 10.1016/j.clay.2008.09.003.
  • 26. Mozgawa, W. (2007). Vibrational Spectroscopy of Zeolites. Habilitation dissertation, AGH University of Science and Technology, Krakow, Poland.
  • 27. Rattanasak, U. & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22(12), 1073–1078. DOI: 10.1016/j.mineng.2009.03.022.
  • 28. Heah, C. Y., Kamarudin, H., Mustafa Al Bakri, A. M., Bnhussain, M., Luqman, M. & Khairul Nizar, I. (2012). Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr. Build Mater. 35, 912–922. DOI: 10.1016/j.conbuildmat.2012.04.102.
  • 29. Andini, S., Cioffi, R., Colangelo, F., Grieco, T., Montagnaro, F. & Santoro, L. (2008). Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manage. 28(2), 416–423. DOI: 10.1016/j.wasman.2007.02.001.
  • 30. Gougazeh, M. & Buhl, J. C. (2014). Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin. Appl. Clay Sci. 15, 35–42. DOI: 10.1016/j.jaubas.2013.03.007.
  • 31. Flaningen, E. M., Khatami, H. & Szymański, H. A. (1974). Infrared structural studies of zeolite frameworks. Adv. Chem. Ser. 101, 201–229. DOI: 10.1021/ba-1971-0101.ch016.
  • 32. Mikuła, A., Król, M. & Koleżyński, A. (2015). The influence of the long-range order on the vibrational spectra of structures based on sodalite cage. Spectrochim. Acta A. 144, 273–280. DOI: 10.1016/j.saa.2015.02.073.
  • 33. Cundy, C. S. & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Micropor. Mesopor. Mat. 82(1–2), 1–78. DOI: 10.1016/j.micromeso.2005.02.016.
  • 34. Tang, Q., Ge, Y. Y., Wang, K. T., He, Y. & Cui, X. M. (2015). Preparation and characterization of porous metakaolin-based inorganic polymer spheres as an adsorbent. Mater. Design. 88, 1244–1249. DOI: 10.1016/j.matdes.2015.09.126.
  • 35. Mozgawa, W., Król, M. & Bajda, T. (2009). Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbents. J. Mol. Struct. 924–926, 427–433. DOI: 10.1016/j.molstruc.2008.12.028.
  • 36. Góra-Marek, K. & Datka, J. (2006). IR studies of OH groups in mesoporous aluminosilicates. Appl. Catal. A. 302 (1), 104–109. DOI: 10.1016/j.apcata.2005.12.027.
  • 37. Król, M., Mozgawa, W., Barczyk, K., Bajda, T. & Kozanecki, M. (2013). Changes in the vibrational spectra of zeolites due to sorption of heavy metal cations. J. Appl. Spectrosc. 80 (5), 644–650. DOI: 10.1007/s10812-013-9821-5.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc1317d5-6318-4d20-a273-ff00e762e2f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.