PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface layer properties of low-alloy high-speed steel after grinding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Investigations of the surface layer characteristics of selected kinds of low-alloy high-speed steel after grinding were carried out. They were carried out on the flat-surface grinder with a 95A24K grinding wheel without cooling. The influence of grinding parameters was defined especially for: the quantity of secondary austenite, surface roughness, microhardness and grinding efficiency with a large range of grinding parameters: grinding depth 0.005–0.035 mm, lengthwise feed 2–6 m/min, without a cross-feed on the whole width of the sample. It was found that improvement of grinding properties of low-alloy high-speed steels is possible by efficient selection of their chemical composition. The value of the grinding efficiency is conditioned by grinding forces, whose value has an impact on the grinding temperature. To ensure high quality of the tool surface layer (i.e. a smaller amount of secondary austenite, lack of wheel burn and micro-cracks) in the case of sharpening of tools made of low-alloy high-speed steel, the grinding temperature should be as low as possible.
Rocznik
Strony
275--279
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering and Aeronautics, Department of Manufacturing and Production Engineering, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Department of Materials Forming and Processing, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Abidi H., Rezaei S.M., Sarhan A.A.D. (2013), Analitycal modeling of grinding wheel loading phenomena, International Journal of Advanced Manufacturing Technology, 68(1-4), 473-485.
  • 2. Arsecularatne J.A., Zhang L.C., Montross C. (2006), Wear and tool life of tungsten carbide, PCBN and PCD cutting tools, International Journal of Machine Tools and Manufacture, 46(5), 482-491.
  • 3. Bonek M. (2014), The investigation of microstructures and properties of high speed steel HS6-5-2-5 after laser alloying, Archives of Metallurgy and Materials, 59, 1647-1651.
  • 4. Brinksmeier E., Heinzel C., Wittmann M. (1999), Friction, cooling and lubrication in grinding, CIRP Annals - Manufacturing Technology, 48(2), 581-598.
  • 5. Ding Z., Li B., Liang S.Y. (2015), Phase transformations and residual stress of Maraging C250 steel during grinding, Materials Letters, 154, 37-39.
  • 6. El-Rakayby A.M., Mills, B. (2013), On the microstructure and mechanical properties of high-speed steels, Journal of Materials Science, 23(12), 4340-4344.
  • 7. El-Shall H. (1984), Physico-chemical asects of grinding: a review of use of additives, Powder Technology, 38, 275-293.
  • 8. Foeckerer T., Zaeh M.F., Zhang O.B. (2013), A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening, International Journal of Heat and Mass Transfer, 56(1–2), 223-237.
  • 9. Gu R.J., Shillor M., Barber G.C., Jen T. (2004), Thermal analysis of the grinding process, Mathematical and Computer Modelling, 39(9-10), 991-1003.
  • 10. Hou Z.B., Komanduri R. (2004), On the mechanics of the grining process, Part II—thermal analysis of the fine grinding, International Journal of Machine Tools and Manufacture, 44(2-3), 247-270.
  • 11. Jaworski J., Kluz R., Trzepieciński T. (2014), The influence of machining parameters on the place of formation and intensity of the wear process of drills, Tribologia, 45(3), 81-90 (in Polish).
  • 12. Jaworski J., Kluz R., Trzepieciński T. (2016), Operational tests of wear dynamics of drills made of low-alloy high-speed HS2-5-1 steel, Eksploatacja i Niezawodnosc - Maintenance and Reliability, 18(2), 271-277.
  • 13. Jaworski J., Trzepieciński T. (2016a), Grindability of selected grades of low-alloy high-speed steel, Advances in Science and Technology Research Journal, 10(31), 222-228.
  • 14. Jaworski J., Trzepieciński T. (2016b), Research on durability of the turning tools made of low-alloy high-speed steels, Kovové Materialy – Metallic Materials, 54(1), 17-25.
  • 15. Józwik J., Pietras P. (2013), Investigation and assessment of occupational risk of the metal cutting machine tool stand, Advances in Science and Technology Research Journal, 7(20), 47-54.
  • 16. Krajnik P., Drazumeric R., Badger J., Kopač J., Nicolescu C.M. (2011), Particularities of grinding high speed steel punching tools, Advanced Materials Research, 325, 177-182.
  • 17. Kulesza E., Dąbrowski J.R., Sidun J., Neyman A., Mizera J. (2012), Freeting wear of materials - methodological aspects of research, Acta Mechanica et Automatica, 6(3), 58-61.
  • 18. Lefebvre A., Lanzetta F., Lipinski P., Torrance A.A. (2012), Measurement of grinding temperatures using a foil/workpiece thermocouple, International Journal of Machine Tools and Manufacture, 58, 1-10.
  • 19. Lefebvre A., Lipinski P., Vieville P., Lescalier C. (2008), Experimental analysis of temperature in grinding at the global and local scales, Machining Science and Technology, 12(1), 1-14.
  • 20. Li H.N., Axinte D. (2016), Textured grinding wheels: A review, International Journal of Machine Tools and Manufacture, 109, 8-35.
  • 21. Littman, W. E., Wulff, J. (1955), The influence of the grinding process on the structure of hardened steels, Transactions of the American Society for Metals, 47, 692-714.
  • 22. Malkin S., Guo C. (2007), Thermal analysis of grinding, CIRP Annals - Manufacturing Technology, 56(2), 760-782.
  • 23. Masłow E.N. (1974), Theory of material polishing, Maschinostrojenie, Moscow.
  • 24. Moravcik R., Stefanikova M., Cicka R., Caplovic L., Kocurova K., Sturm R. (2012), Phase transformations in high alloy cold work tool steel, Strojniski Vjesnik - Journal of Mechanical Engineering, 58(12), 709-715.
  • 25. Oliveira J.F.G., Silva E.J., Guo C., Hashimoto F. (2009), Industrial challenges in grinding, CIRP Annals - Manufacturing Technology, 58(2), 663-680.
  • 26. Romano P., Velasco F.J., Torralba J.M., Candela N. (2006), Processing of M2 powder metallurgy high-speed steel by 419(1-2), 1-7.
  • 27. Rowe W.B., Black S.C.E., Mills B. (1995), Experimental investigation of heat transfer in grinding, CIRP Annals – Manufacturing Technology, 44(1), 329-332.
  • 28. Sallem H., Hamdi H. (2015), Analysis of measured and predicted residual stresses induced by finish cylindrical grinding of high speed steel with CBN wheel, Procedia CIRP, 31, 381-386.
  • 29. Sinopalnikow W.A., Grigoriew S.N. (2003), Reliability and diagnosis of technological systems, MGU Stankin, Moscow.
  • 30. Tawakoli T., Hadad M., Sadeghi M.H., Daneshi A., Sadeghi B. (2011), Minimum quantity lubrication in grinding: effects of abrasive and coolant–lubricant, Journal of Cleaner Production, 19(17–18), 2088-2099.
  • 31. Torrance A.A. (1978), Metallurgical effects associated with grinding, Proceedings of 19th Machine Tool Design and Research Conference, Manchester, England, 637-644.
  • 32. Uhlmann E., Lypovka P., Hochschild L., Schröer N. (2016), Influence of rail grinding process parameters on rail surface roughness and surface layer hardness, Wear, 366-367, 287-293.
  • 33. Urbaniak M. (2006), Effect of the conditioning of CBN wheels on the technological results of HS6-5-2 steel grinding, Archives of Civil and Mechanical Engineering, 6(2), 31-39.
  • 34. Walton I.M., Stephenson D.J., Baldwin A. (2006), The measurement of grinding temperatures at high specific material removal rates, International Journal of Machine Tools & Manufacture, 46, 1617-1625.
  • 35. Weiss B., Lefebvre A., Sinot O., Marquer M., Tidu A. (2015), Effect of grinding on the sub-surface and surface of electrodeposited chromium and steel substrate, Surface and Coatings Technology, 272, 165-175.
  • 36. Zhang D., Li C., Jia D., Zhang Y., Zhang X. (2015), Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding, Chinese Journal of Aeronautics, 28(2), 570-581.
  • 37. Zhou N., Peng R.L., Pettersson R. (2016), Surface integrity of 2304 duplex stainless steel after different grinding operations, Journal of Materials Processing Technology, 229, 294-304.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc121c15-53cc-47ec-86b5-47886964cc3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.