PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation study of an auto-thermal double-membrane reactor for the simultaneous production of hydrogen and methanol: comparison of two different hydrogen redistribution strategies along the reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a continuing effort to realize the simultaneous hydrogen and methanol production via the auto-thermal methanol synthesis process, the effect of two different hydrogen redistribution strategies along a double-membrane reactor has been considered. A steady-state one-dimensional heterogeneous model was developed to compare two strategies applied in the operation of the auto-thermal methanol synthesis. It was found that the counter-current configuration exhibited the better performance compared to the reactor operated in the co-current mode from both the economic and environmental points of view. This superiority is ascribed to the establishment of a more favourable temperature profile along the reactor and also more hydrogen extraction from the reaction zone. Moreover, the influence of some operating variables was investigated on the performance of the auto-thermal double-membrane reactor in the counter-current configuration. The results suggest that utilizing this configuration for pure hydrogen and methanol production could be feasible and beneficial.
Rocznik
Strony
115--124
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Sahand University of Technology, Chemical Engineering Faculty, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran (Islamic Republic of Iran)
  • Sahand University of Technology, Reactor and Catalysis Research Center (RCRC), P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran (Islamic Republic of Iran)
autor
  • Sahand University of Technology, Chemical Engineering Faculty, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran (Islamic Republic of Iran)
  • Sahand University of Technology, Reactor and Catalysis Research Center (RCRC), P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran (Islamic Republic of Iran)
autor
  • Sahand University of Technology, Chemical Engineering Faculty, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran (Islamic Republic of Iran)
  • Sahand University of Technology, Reactor and Catalysis Research Center (RCRC), P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran (Islamic Republic of Iran)
  • Shiraz University, Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz, Iran (Islamic Republic of iran)
Bibliografia
  • 1. Goltsov, V.A., Veziroglu, T.N. & Goltsova, L.F. (2006). Hydrogen civilization of the future – A new conception of the IAHE. Int. J. Hydrogen Ener. 31(2), 153–159. DOI: 10.1016/j.ijhydene.2005.04.045.
  • 2. Ni, M., Leung, M.K.H., Leung, D.Y.C. & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425. DOI: 10.1016/j.rser.2005.01.009.
  • 3. Ni, M., Leung, M.K.H., Sumathy, K. & Leung, D.Y.C. (2006). Potential of renewable hydrogen production for energy supply in Hong Kong. Int. J. Hydrogen Energy 31(10), 1401–1412. DOI: 10.1016/j.ijhydene.2005.11.005.
  • 4. Ni, M., Leung, D.Y.C., Leung, M.K.H. & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Process. Technol. 87(5), 461–472. DOI: 10.1016/j.fuproc.2005.11.003.
  • 5. Ye, G., Xie, D., Qiao, W., Grace, J.R. & Lim, C.J. (2009). Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus. Int. J. Hydrogen Energy 34(11), 4755–4762. DOI: 10.1016/j.ijhydene.2009.03.047.
  • 6. Biniwale, R.B., Kariya, N. & Ichikawa, M. (2005). Dehydrogenation of cyclohexane over Ni based catalysts supported on activated carbon using spray-pulsed reactor and enhancement in activity by addition of a small amount of Pt. Catal. Lett. 105(1–2), 83–87. DOI: 10.1007/s10562-005-8009-x
  • 7. Pande, J.V., Shukla, A. & Biniwale, R.B. (2012). Catalytic dehydrogenation of cyclohexane over Ag-M/ACC catalysts for hydrogen supply. Int. J. Hydrogen Energy 37(8), 6756–6763. DOI: 10.1016/j.ijhydene.2012.01.069.
  • 8. Koutsonikolas, D., Kaldis, S., Zaspalis, V.T. & Sakellaropoulos, G.P. (2012). Potential application of a microporous silica membrane reactor for cyclohexane dehydrogenation. Int. J. Hydrogen Energy 37(21), 16302–16307. DOI: 10.1016/j.ijhydene.2012.02.076.
  • 9. Chinchen, G.C., Denny, P.J., Jennings, J.R., Spencer, M.S. & Waugh, K.C. (1988). Synthesis of methanol: Part 1. catalysts and kinetics. Appl. Catal. 36, 1–65. DOI: 10.1016/S0166-9834(00)80103-7.
  • 10. Wang, F., Liu, Y., Gan, Y., Ding, W., Fang, W. & Yang, Y. (2013). Study on the modification of Cu-based catalysts with cupric silicate for methanol synthesis from synthesis gas. Fuel Process. Technol. 110, 190–196. DOI: 10.1016/j.fuproc.2012.12.012.
  • 11. Lee, D.H. & Kim, T. (2013). Plasma-catalyst hybrid methanol-steam reforming for hydrogen production. Int. J. Hydro. Energy 38(14), 6039–6043. DOI: 10.1016/j.ijhydene.2012.12.132.
  • 12. Khzouz, M., Wood, J., Pollet, B. & Bujalski, W. (2013). Characterization and activity test of commercial Ni/Al2O3, Cu/ZnO/Al2O3 and prepared Ni-Cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels. Int. J. Hydro. Energy 38(3), 1664–1675. DOI: 10.1016/j.ijhydene.2012.07.026.
  • 13. Khademi, M.H., Setoodeh, P., Rahimpour, M.R. & Jahanmiri, A. (2009). Optimization of methanol synthesis and cyclohexane dehydrogenation in a thermally coupled reactor using differential evolution (DE) method. Int. J. Hydro. Energy 34(16), 6930–6944. DOI: 10.1016/j.ijhydene.2009.06.018.
  • 14. Khademi, M.H., Jahanmiri, A. & Rahimpour, M.R. (2009). A novel configuration for hydrogen production from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor. Int. J. Hydro. Energy 34(12), 5091–5107. DOI: 10.1016/j.ijhydene.2009.04.007.
  • 15. Khademi, M.H., Rahimpour, M.R. & Jahanmiri, A. (2010). Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor. Int. J. Hydro. Energy 35(5), 1936–1950. DOI: 10.1016/j.ijhydene.2009.12.080.
  • 16. Rahmani, F., Haghighi, M., Estifaee, P. & Rahimpour, M.R. (2012). A comparative study of two different membranes applied for auto-thermal methanol synthesis process. J. Nat. Gas Sci. Engine. 7, 60–74. DOI: 10.1016/j.jngse.2012.04.001.
  • 17. Rahimpour, M.R., Bayat, M. & Rahmani, F. (2010). Enhancement of methanol production in a novel cascading fluidized-bed hydrogen permselective membrane methanol reactor. Chem. Engine. J. 157(2–3), 520–529. DOI: 10.1016/j.cej.2009.12.048.
  • 18. Rahimpour, M.R., Rahmani, F., Bayat, M. & Pourazadi, E. (2011). Enhancement of simultaneous hydrogen production and methanol synthesis in thermally coupled double-membrane reactor. Int. J. Hydro. Energy, 36(1), 284–298. DOI: 10.1016/j.ijhydene.2010.09.074.
  • 19. Gallucci, F., Comite, A., Capannelli, G. & Basile, A. (2006). Steam reforming of methane in a membrane reactor: an industrial case study. Industrial & Engine. Chem. Res. 45(9), 2994–3000. DOI: 10.1021/ie058063j.
  • 20. Gallucci, F., Basile, A., Tosti, S., Iulianelli, A. & Drioli, E. (2007). Methanol and ethanol steam reforming in membrane reactors: An experimental study. Int. J. Hydro. Energy 32(9), 1201–1210. DOI: 10.1016/j.ijhydene.2006.11.019.
  • 21. Gallucci, F. & Basile, A. (2006). Co-current and counter-current modes for methanol steam reforming membrane reactor. Int. J. Hydro. Energy 31(15), 2243–2249. DOI: 10.1016/j.ijhydene.2006.05.007.
  • 22. Gallucci, F., Paturzo, L. & Basile, A. (2004). Hydrogen recovery from methanol steam reforming in a dense membrane reactor: simulation study. Industrial & Engine. Chem. Rese. 43(10), 2420–2432. DOI: 10.1021/ie0304863.
  • 23. Chen, Z., Yan, Y. & Elnashaie, S.S.E.H. (2003). Nonmonotonic behavior of hydrogen production from higher hydrocarbon steam reforming in a circulating fast fluidized bed membrane reformer. Industrial & Engine. Chem. Res. 42(25), 6549–6558. DOI: 10.1021/ie021013j.
  • 24. Basile, A., Paturzo, L. & Gallucci, F. (2003). Co-current and counter-current modes for water gas shift membrane reactor. Catal. Today 82(1–4), 275–281. DOI: 10.1016/s0920-5861(03)00241-4
  • 25. Rahimpour, M.R., Moghtaderi, B., Jahanmiri, A. & Rezaie, N. (2005). Operability of an industrial methanol synthesis reactor with mixtures of fresh and partially deactivated catalyst. Chem. Engine. & Technol. 28(2), 226–234. DOI: 10.1002/ceat.200407062.
  • 26. Rezaie, N., Jahanmiri, A., Moghtaderi, B. & Rahimpour, M.R. (2005). A comparison of homogeneous and heterogeneous dynamic models for industrial methanol reactors in the presence of catalyst deactivation. Chem. Engine. Proces. 44(8), 911–921. DOI: 10.1016/j.cep.2004.10.004.
  • 27. Graaf, G.H., Scholtens, H., Stamhuis, E.J. & Beenackers, A.A.C.M. (1990). Intra-particle diffusion limitations in low-pressure methanol synthesis. Chem. Engine. Sci. 45(4), 773–783. DOI: 10.1016/0009-2509(90)85001-t.
  • 28. Graaf, G.H., Sijtsema, P.J.J.M., Stamhuis, E.J. & Joosten, G.E.H. (1986). Chemical equilibria in methanol synthesis. Chem. Engine. Sci. 41(11), 2883–2890. DOI: 10.1016/0009-2509(86)80019-7.
  • 29. Itoh, N. (1987). A membrane reactor using palladium. AIChE J. 33(9), 1576–1578. DOI: 10.1002/aic.690330921.
  • 30. Jeong, B.H., Sotowa, K.I. & Kusakabe, K. (2003). Catalytic dehydrogenation of cyclohexane in an FAU-type zeolite membrane reactor. J. Mem. Sci. 224(1–2), 151–158. DOI: 10.1016/j.memsci.2003.08.004.
  • 31. Rahimpour, M.R. & Ghader, S. (2003). Theoretical investigation of a Pd-membrane reactor for methanol synthesis. Chem. Engine. & Technol. 26(8), 902–907. DOI: 10.1002/ceat.200301717.
  • 32. Reid, R.C. & Sherwood, T.K. (1969). The properties of gases and liquids (Second Edition ed.). New York: McGraw-Hill.
  • 33. Lindsay, A.L. & Bromley, L.A. (1950). Thermal conductivity of gas mixture. Industrial & Engine. Chem. Res. 42(8), 1508–1511. DOI: 10.1021/ie50488a017.
  • 34. Cussler, E.L. (2009). Diffusion: mass transfer in fluid systems (3rd ed.): Cambridge University Press.
  • 35. Rahimpour, M.R. & Pourazadi, E. (2011). A comparison of hydrogen and methanol production in a thermally coupled membrane reactor for co-current and counter-current flows. Int. J. Energy Res. 35(10), 863–882. DOI: 10.1002/er.1744.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc12180d-be28-4b34-bfcc-1865e3761b0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.