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We develop a theory to determine the search number of a graph that allows us to detect an intruder along an 
edge without limiting the visibility of adjacent vertices. The presented technique here will allow to express the 
sweep problem as a linear program using an existing formulation of a linear program designed for problems 
where capture occurs only at a vertex of a graph. We also provide a method to solve the sweep problem for any 
complex tree, utilizing a set of sub-trees of the tree. 
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1. Introduction 
 
Searching for a lost man or an object in an 
environment in a real-world context would be  
a matter of collective efforts of man power and 
use of secondary operations such as the use of 
robotics or technology driven solutions. Let’s 
name the said lost person as an intruder for the 
context, which could be a continuously moving 
object or could be a person who keeps on taking 
intelligent moves to avoid being caught or might 
be an object which is intangible. In mathematical 
context and in general, the idea that one group of 
people will be tracking down or pursuing  
a single or multi-person party in an environment 
while another party will be trying to evade the 
former are called pursuit-evasion problems.  
The search and sweep problems in graphs were 
initially proposed by the mathematician T.D. 
Parsons in his article [1]. 

 
 

Fig. 1. Optimal trees for search numbers 1, 2, and 3 
 

His findings were developed specifically for 
tree structures. He introduces a set of optimal 
tree structures {𝑇𝑘} (see Figure 1) in [1] for 
each search number and produces an algorithm 
to find the search number for any arbitrary tree 
structure, where the minimum amount of people 
needed for the search party is called the search 
number. 

Throughout this project, we denote the 
search number of graph G by S(G).  

Countless variants of pursuit-evasion 
problems exist in literature, in discrete and in 
continuous forms. Here we will consider  
a discrete pursuit-evasion problem with tree-
structured graph environment, which is called 
the Sweep Problem. The said tree will be finitely 
connected without loops or multiple edges.  
A vertex would be a connection point of two or 
more edges. The notion behind this is, the 
intruder and searchers will be moving along  
the edges and vertices of a graph. Their behavior 
is constrained by the structure of the graph.  

 The idea is, if we take a cave system 
blueprint as the environment where the person 
got lost, in the sweep problem, searchers and the 
intruder will meet each other at any place inside 
of the cave. It could be either on a vertex or on 
an edge in the graph theory context.  

The searching party have some restrictions 
during the search operation. But the intruders 
have no such restrictions. From the survey done 
by B. Alpach in [2], he sets several sweeping  
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models. One searcher could be moving at one 
time interval while rest of the searchers are on 
hold, or the searchers will be moving in  
a discontinuous way while intruder keeps 
moving according to some continuous function. 
Other than conducting search operations for 
intruders in a cave system, some other 
applications has been introduced [3] explains 
application in mobile robotics motion planning, 
in telecommunication network systems etc. 
Further clearing a complex system of connected 
pipes to remove some noxious gas, finding a lost 
vehicle in a particular road system were 
discussed in [4], [5], and searching a computer 
network to find a virus has been given in [6] as 
real-life applications associated to our subject 
area. Using concepts of robotics and graph 
theory for indoor pursuit evasion to catch  
a mobile intruder and providing an algorithm to 
catch an intruder who actively avoid searchers, 
node searching when the intruder’s speed is 
infinite which discussed in [7] are some 
interesting illustrations related to this entire topic 
of discussion. Although finding the search 
number for general graphs are NP-hard problems 
as in [8], several search algorithms with different 
complexity results are explained in [9] by Borie. 
According to A.S. LaPaugh [10] and Sheng- 
-Lung Peng [11], the search number of a tree can 
be computed in linear time with a time 
complexity of 𝑂(𝑛2 log 𝑛). In relation to the 
combinatorial approaches conducted so far on 
the subject, one popular approach is a mixed 
integer programming approach which heavily 
dedicates itself for search operations on general 
graphs. Our study itself has focused on initial 
presentations brought by Z.C. Taskin et al.,  
who elaborates on node searching in [12].  
They provide an exponential-size set-covering 
formulations for these problems and use the dual 
problem of the formulation to introduce a linear 
program along with the branch-cut-price 
algorithms to solve them.  

On a similar note, multi agent path-finding 
approach on trees also brought out into literature 
which also uses branch-cut-price algorithm in 
solving the combinatorial problem in [13]. 
Models brought out so far haven’t directly 
addressed the linear/integer programming 
formulation to find the search number needed to 
clear a tree under sweep problem. Hence an 
attempt is brought out in this study, which 
further have room for improvement. The paper is 
organized as follows. Section 2 discusses how to 
add some vertices to the graph in order to 
cooperate the set covering formulation and 
hence the linear programming formulation that 

defined in [12] by Z.C. Taskin et al., for the 
search problem (they assume the visibility of 
adjacent vertices of the graph) in to the sweep 
problem. In Section 3, it is explained how to 
determine a sub-tree structure in order to obtain 
the search number and then how to use sub-tree 
structure to solve the sweep problem for 
complex tree structures. Following that  
section 4 will describe how to apply findings to  
a sweep problem for an arbitrary tree structure. 
This section also includes a concrete example. 
 
2. Linear program for sweep 

problem 
 
The linear programming formulation to find the 
search number in a general graph introduced by 
J. Cole Smith et al. [12] using the following set 
covering formulation. They denote the set of all 
possible walks of length T by P(T), where a walk 
p ∈ P(T) is a sequence of vertices {𝑖1, 𝑖2,…, 𝑖𝑟} 
of the graph such that for all 1 ≤ 𝑘 ≤ 𝑟 −1, 𝑖𝑘+1  
is an adjacent node of node 𝑖𝑘 of the graph.  
Also they define the length of a walk as the 
number of edges in the walk. 
 
Model (page 5, [12]) 
minimize ( ) pp P T

λ
∈∑            (1) 

 
subject to ( ) 1pr pp P T

d λ
∈

≥∑           (2) 

( ) ( )0,1 ,  0,1p prdλ ∈ ∈  
 
where: 
 
𝜆𝑝 = Binary variable which equals 1 if a searcher 
is assigned to follow the walk p 
𝑑𝑝𝑟 = Binary parameter which equals 1  
if the intruder following the walk r gets caught 
to the searcher which follow the searcher walk p.  

 
The objective function (1) minimize the 

number of searchers traversing in the graph, and 
the sets of constraints given by (2) ensure that 
for each possible intruder route, there is at least 
one searcher who can detect it. We identified 
that the same set cover formulation can be used 
for sweep problem which allows to meet the 
intruder to a searcher even along an edge,  
not only at a vertex as assumed in [12] with  
the following modification of the graph. And 
hence the linear program given in page 8 in [12]. 

Here we modify the graph by adding an 
additional vertex on each edge of the graph by 
considering them as a place where searcher and 
intruder can meet. Addition of those vertices  
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will eliminate the visibility assumptions of the 
adjacent vertices of the graph given in [12]. 
 
3. Use of the search number of 

subtrees to find the search number 
for complex trees 

 
Article [12] used the branch-cut-price algorithm 
to the whole graph to find the search number in  
a given arbitrary graph within a given time 
period. The complexity of the problem is higher 
due to their consideration of the full graph.  
So, here we propose to use the results of Parson 
in [1] to find the search number for trees. Here, 
we deconstruct the provided tree structure into 
its constituent homeomorphic disjoint copies. 
Homeomorphism of tree structures indicate the 
same tree that is drawn differently. But those are 
considered as equivalent since the search 
number does not change. 

Then we use the following two theorems 
given by Parson in [1] to simplify our 
operations. 
 
Theorem 1 (page 4 in [1]). 
Let k be an integer such that 𝑘 ≥ 1 and let 𝑇 be  
a tree. Then 𝑆(𝑇) ≥ 𝑘 + 1 if 𝑇 has vertex 𝑣  
at which, there are at least three branches 𝑇1, 
𝑇2, 𝑇3 satisfying 𝑆(𝑇𝑗) ≥ 𝑘 for 𝑗 = 1, 2, 3. 
 
Theorem 2 (page 5 in [1]).  
Let 𝑘 ≥ 2. Let T be a tree. Then 𝑆(𝑇) = 𝑘 if and 
only if 𝑇 has a subtree homeomorphic to a tree 
in 𝑇𝑘, but 𝑇 has no subtree homeomorphic to  
a tree in 𝑇𝑘+1. 
Theorem 2 refer {𝑇𝑘}’s as set of recursive set of 
trees for each search number which introduced 
by Parson such that all the trees in set {𝑇𝑘} are 
homeomorphic. Let’s refer them as optimal tree 
structures introduced by Parson. Figure 1 gives 
some example graphs from optimal 
homeomorphic tree structures of 𝑇1, 𝑇2, 𝑇3  
and 𝑇4. In this paper we will be referring 𝑇𝑘’s  
as a set of homeomorphic maximal tree 
structures of a given tree. Also we will be using 
the set cover formulation and optimal trees 𝑇𝑘 s, 
Parson introduced which the search number is 
known, to find the search number of these 
homeomorphic subtree clusters 𝑇𝑘. 
 
3.1. Reduction of Homeomorphic Clusters 
 
Discovering the maximal tree structures is a way 
of characterizing the structure of a tree. Let 𝑇 be 
a tree and 𝑣 be a vertex of 𝑇. A branch starting 
from vertex v is called a maximal subtree of 𝑇 

according to [1], if it supports the condition  
that the valence of v is one in subtrees (see 
Figure 2). 

 
 

Fig. 2. Maximal subtree 
 
A cluster of a selected tree can be identified  
as a disjoint graph taken from a root of a tree. 
On a recurrent sub trees 𝑇𝑘 introduced by 
Parson, clusters made from the root node  
will have same adjacency matrices which will 
highlight their equivalence relation. And, all 
maximal tree clusters will be equal in size for 
those Tk subtrees. But in our paper, the clusters 
{Tk} will not to be in the same size. The cluster 
reduction will happen by taking a single vertex 
where there exist maximum number of clusters 
which are maximal subtrees. 
 
4. Sweep a Tree 
 
Let T be a tree which needs to find the intruder 
within a finite time. Then the following steps 
will explain how to sweep a tree by combining 
all the findings of previous sections:  
1. Reduce the tree T to homeomorphic clusters 

{𝑇𝑘} which are also maximal subtrees. 
2. Select a cluster and introduce a vertex for 

each edges of the cluster as suggested in 
section 2 to address the possibility of 
capturing the intruder on an edge. 2 to 
address the possibility of capturing the 
intruder on an edge. 

3. Decide the time period which we can spend 
on finding the intruder if it is not given. 
Time period needed for the search operation 
are taken into consideration according to the 
number of edges the searcher or the intruder 
travel prior to getting caught. In the sweep 
problem, we assume both parties are 
traversing from one vertex to the adjacent 
vertex without omitting any vertices. Hence 
the number of time steps equals the number 
of edges in a particular search path. To be 
more specific, one-time step of the search 
operation is defined as, one step going from 
one vertex to the other. So the time period 
that we are planning to spend can be 
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decided according to the number of time 
steps that we proceed. If the number of time 
steps is not specified, we suggest 
considering the number of edges that can 
connect the root node to the farthest leaf 
vertex. Since that gives the minimum 
number of time steps needed if the searcher 
moves forward without backtracking. 

4. Find the search number for the particular 
cluster. We will use pre-identified optimal 
trees Tk defined by Parson in [1] to find the 
search number of the cluster. Note that 𝑇𝑘 is 
defined for all the search numbers by 
Parson in [1]. If the cluster is not in any of 
optimal tree structures 𝑇𝑘, we will use the 
branch-cut-algorithm to find the search 
number of the cluster. The search operation 
happens by clearing one cluster at a time. 
Hence there’s a possibility for the moving 
intruder to move past clusters where 
searchers are occupied. In order to make 
sure that the moving intruder doesn’t jump 
across the clusters while mobile searchers 
are searching a certain cluster, we have to 
place stationary searchers on the nodes 
where cluster reduction happens. Therefore, 
a stationary searcher will be placed at  
node 𝑣. Hence, total search number of the 
reduced cluster equals the mobile searchers 
in the homeomorphic cluster plus the 
stationary searcher positioned at the starting 
point of the reduced cluster. 

5. Follow the same steps from 2 to 4 for other 
remaining clusters. Then the search number 
of the original tree 𝑇 will be 𝑆(𝑇𝑘) when  
the cluster 𝑇𝑘 gives the maximum search 
number which is equal to 𝑆(𝑇𝑘) among all 
the clusters. 

 
4.1. Demonstration of the findings 
 
Let 𝑇 be given as in Figure 3(a). Then let us 
consider the reduced cluster which is given in 
Figure 3(b). Once the cluster is reduced, we add 
temporary vertices 𝑥, 𝑦, 𝑧 on each edge as in  
Figure 3(c) and take those vertices as the 
meeting points of the searcher and the intruder 
on the edge.  

Here we can use the reduced homeomorphic 
cluster (b) of 𝑇 which given in Figure 3 is in the 
optimal tree structures 𝑇2 which introduced by 
Parson. Therefor according to [1], the graph (b) 
has search number 2 (see Figure 1) and hence we 
need 2 mobile searchers to cover the reduced 
cluster (b). Therefore, the search number of 
reduced cluster will be 3 with the stationary 
searcher at the vertex 𝑣. 

Note that we also can use branch-cut-
algorithm to the graph Figure 3(c) with time step 
equal to 4 since there are 4 edges from vertex 𝑣 
to the any of leaf vertex 𝑚 or 𝑛. 
 

 
 
Fig. 3. Homeomorphic cluster reduction and addition 

of vertices 
 
Additional to the cluster that we considered in 
Figure 3(b), we can see there are two more 
clusters at vertex 𝑣 on tree 𝑇. One is 
homeomorphic to the cluster Figure 3(b) that we 
already considered, so it has the same search 
number 3. And the other cluster connects only 
one vertex to 𝑣 on tree T. So, it belongs to 𝑇𝑘 
and hence has the search number equal to 2. 

Then since the maximum search number is 
3 which is required to cover the clusters, the 
search number of tree T is equal to 3. 
 
5. Conclusion 
 
In this study, we explain how to determine  
a graph’s search number where the intruder can 
be located along edges as well as vertices. 
Additionally, this takes care of the situation 
where neighboring vertices are obscured.  
We were able to apply the branch-cut approach 
to get the search number in any given graph that 
included edges as meeting points since the 
changes made by adding more vertices to each 
edge of the graph still permitted to describe the 
problem as a linear program. Although adding 
more vertices increases the number of steps,  
it decreases the amount of time required to clean 
the network.  

As a special situation, we concentrate on 
trees and use a pre-defined collection of optimal 
trees to determine the search number of subtrees 
of the original tree. In the absence of an ideal 
tree that is homomorphic to the subtree, the 
branch-cut algorithm is applied.  

As future works, image processing can be 
used to enhance the computational programming 
portion. The study can also be applied to 
scenarios in which searchers or intruders start 
their operations at random points on the graph 
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rather than at the root vertex or leaf. The 
research could further explore the notion of 
discretizing edges and could assist in 
circumstances when the pace of the intruder and 
the searcher is varied. 
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Rozwiązywanie problemu przeczesywania drzew w teorii grafów 

 
W.A.L. NIWANTHI, H.D. PANDITHARATHNE, S.S.N. PERERA 

 
Opracowano teorię wyznaczania liczby przeszukiwań grafu, która pozwala wykryć intruza wzdłuż krawędzi bez 
ograniczania widoczności sąsiednich wierzchołków. Przedstawiona technika pozwoli wyrazić problem 
przeczesywania grafu w postaci zadania programowania liniowego, wykorzystując istniejące sformułowanie 
programu liniowego przeznaczonego dla problemów, w których przechwytywanie następuje tylko w 
wierzchołku grafu. Przedstawiono również metodę rozwiązywania problemu przeczesywania dla dowolnego 
złożonego drzewa, wykorzystując zestaw poddrzew drzewa. 
 
Słowa kluczowe: problem wyszukiwania i przeczesywania, problem pokrycia zestawu, algorytm wycinania 
gałęzi, drzewa homeomorficzne. 
 


