PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Możliwość namnażania biomasy glonów na bazie odcieku pochodzącego z odwadniania osadów pofermentacyjnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The Possibility of Algae Biomass Production Based on Effluent from Digested Sludge Dewatering Process
Języki publikacji
PL
Abstrakty
EN
The study’s objective was to determine feasibility of proliferating algae biomass based on eluate from closed fermentation tank of Municipal Wastewater Treatment Plant in Olsztyn. The eluate originated from retention tank of eluates produced from dehydration of fermented sludges. Experiments were run with race track-type reactor (active volume 1.0 m3) with paddle agitator assuring flow rate of 0.5 m/s, artificial lighting system, valves for eluates dosing, inlet of air or carbon dioxide, and outlet valves, central partition assuring circulation, and heating system. The cultured algae were a mixture of Chlorella sp. (70%) and Scenedesmus sp. (30%) genera phytoplankton. Each day, the reactor was fed with various doses of eluates ranging from 3.0 to 7.0 dm3/day, depending on culture time and algae biomass concentration in model reactor. Resultant biomass was concentrated and removed outside the system using barrel screen with mesh diameter of 10.0 µm. The maximum values of algae biomass concentration oscillated around 850 to 900 mg d.m./dm3 with average growth rate approximating 50 mg d.m./day. During experimental period, the effectiveness of contaminants removal from eluate was very high. For organic compounds characterized by COD value the average removal effectiveness exceeded 98.5%, whilst for total nitrogen – 98.7%, whereas for total phosphorus was the highest and reached 99.4%. The study showed symbiotic growth of biomass of unicellular and filamentous algae and a low number of bacteria. In this artificial ecosystem the algae constituted 80% (37% – Chlorella sp., 18% – Scenedesmus sp., 16% – blue-green algae, 9% – filamentous algae), whereas bacteria - 20%, including small contribution of protozoa. Owing to such proportion achieved in the culture, the biomass had very good sedimentation properties and formed compact conglomerates which could be easily isolated from the culture medium through sedimentation.
Słowa kluczowe
Rocznik
Strony
1612--1623
Opis fizyczny
Bibliogr. 17 poz., tab., rys.
Twórcy
autor
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
autor
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
autor
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
Bibliografia
  • 1. Borowitzka M.A.: Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70, 313–321 (1999).
  • 2. Börjesson P., Berglund M.: Environmental systems analysis of biogas systems -part I: Fuel-cycle emissions. Biomass Bioenergy, 30(5), 469–485 (2006).
  • 3. Brennan L., Owende P.: Biofuels from microalgae A review of technologies for production, processing, and extractions of biofuels and co-product. Renewable and Sustainable Energy Reviews. 14 (2), 557–577 (2010).
  • 4. Dębowski M., Grala A., Zieliński M., Dudek M.: Efficiency of the methane fermentation process of macroalgae biomass originating from puck bay. Archives of Environmental Protection. 38 (3), DOI: 10.2478/v10265-012-0033-5. 2012.
  • 5. Dębowski M., Zieliński M., Krzemieniewski M.: Wydajność produkcji biomasy glonowej w reaktorze otwartym. Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 13, 1743–1752 (2011).
  • 6. Dębowski M., Zieliński M., Krzemieniewski M., Dudek M., Grala A.: Microalgae – cultivation methods. Polish Journal of Natural Sciences. 27 (2), 151–164 (2012).
  • 7. Fargione J., Hill J., Tilman D., Polasky S., Hawthorne P.: Land clearing and the biofuel carbon debt. Science. 319, 1235–1238 (2008).
  • 8. Grala A., Zieliński M., Dębowski M., Dudek M.: Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process. Pol. J. Environ. Stud. 21(2), 361–366 (2012).
  • 9. Goyal H.B., Seal D., Saxena R.C.: Bio-fuels from thermochemical conversion of renewable resources: a review. Renewable and Sustainable Energy Reviews. 12(2), 504–517 (2008).
  • 10. Johansson D., Azar C.: A Scenario based analysis of land competition between food and bioenergy production in the us. Climatic Change. 82 (3), 267–291 (2007).
  • 11. Molina-Grima E., Belarbi E-H., Acien Fernandez F.G., Robles-Medina A., Chisti Y.: Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20, 491–515 (2003).
  • 12. Mùnoz R., Alvarez T., Mùnoz A., Terrazas E., Guieysse B., Mattiasson B.: Sequential removal of heavymetals ions and organic pollutants using an algal–bacterial consortium. Chemosphere. 63, 903–911 (2006).
  • 13. Mùnoz R., Guieysse B.: Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Research. 40 (15), 2799–2815 (2006).
  • 14. Shen Y., Yuan W., Pei Z., Wu Q., Mao E.: Microalgae mass production methods. Trans. ASABE. 52, 1275–1287 (2009).
  • 15. Searchinger T., Heimlich R., Houghton R., Dong F., Elobeid A., Fabiosa J., Tokgoz S., Hayes D., Yu T.: Use of us croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 319, 1238–1240 (2008).
  • 16. Smith V., Sturm B., deNoyelles F., Billings S.: The ecology of algal biodiesel production. Trends Ecol. Evol. 25 (5), 301–309, 2010.
  • 17. Zieliński M., Dębowski M., Krzemieniewski M.: Ocena wydajności produkcji biomasy glonowej w reaktorze rurowym przy wykorzystaniu jako pożywki odcieków z bioreaktora fermentacji metanowej. Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 13, 1577–1589 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc065152-988b-4a55-bcba-215990f9fb77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.