PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Light extinction and ultrasound method in the identification of liquid mass fraction content in wet steam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, significant progress has been made in experimental studies on the flow of wet steam, measuring techniques based on recording the phenomenon of extinction of light and ultrasound have been elaborated or improved. The basic value experimentally determined in the final stage was the content of the liquid phase defined as the wetness fraction. The methodology of tests and experimental investigations was presented, as well as the applied and developed measurement systems. Next, some developed designs of new ultrasonic and light extinction measuring probe and their modifications are described. The article presents also some examples of applications of the developed measurement techniques in application to experimental research conducted on wet steam. Examples of comparison between experimental and numerical tests for the extinction method are also provided.
Rocznik
Strony
63--92
Opis fizyczny
Bibliogr. 39 poz., rys., wykr., wz.
Twórcy
  • Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
  • Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
  • Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] Andreussi P., Di Donfrancesco A., Messia M.: An impedance method for the measurement of liquid hold-up in two-phase flow. Int. J. Multiphas. Flow 14(1988), 777–785.
  • [2] Bachalo W.D., Houser M.J.: Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions. Opt. Eng. (1984), 583–890.
  • [3] Blaszczuk A.: Experimental investigation of natural convection inside a upper part of vertical converging air channel using the Schlieren technique. Exp. Thermal Fluid Sci. 50(2013), 178–186.
  • [4] Cai X.S., Wang N.N., Wei J.M., Zheng G.: Experimental investigation of the light extinction method for measuring aerosol size distributions. J. Aerosol Sci. 23(1992), 7, 749–757.
  • [5] Cai X., Wanc L., Ouyang X., Pan Y.: A novel integrated probe system for measuring the two phase wet steam flow in steam turbine. J. Eng. Thermophys. 22(1992), 6, 52–57.
  • [6] Dobbins R.A., Jizmagia G.S.: Particle size measurements based on use of mean scattering cross sections. J. Opt. Soc. Am. (1966).
  • [7] Doerffer P., Dykas S.: Numerical analysis of shock induced separation delay by air humidity. J. Therm. Sci. 14(2005), 2, 120–125.
  • [8] Dykas S.: Numerical calculation of the steam condensing flow. TASK Quart. 5(2001), 4, 519–535.
  • [9] Dykas S., Majkut M., Smołka K., Strozik M.: Research on steam condensing flows in nozzles with shock wave. J. Power Technol. 93(2013), 5, 288–294.
  • [10] Dykas S., Majkut M., Smołka K., Strozik M.: Experimental research on wet steam flow with shock wave. Exp. Heat Transfer 28(2015), 5, 417–429.
  • [11] Dykas S., Majkut M., Smołka K., Strozik M.: Analysis of the steam condensing flow in a linear blade cascade. Proc. Inst. Mech. Eng., A J. Power Energy 232(2018), 5, 501–514.
  • [12] Dykas S., Majkut M., Strozik M., Smołka K.: Experimental study of condensing steam flow in nozzles and linear blade cascade. Int. J. Heat. Mass Tran. 80(2015), 50–57.
  • [13] Dykas S., Majkut M., Strozik M., Smołka K.: Non-equilibrium spontaneous condensation in transonic steam flow through linear cascade. In: Proc. 11th European Conf. on Turbomachinery (2015), ID: ETC2015-047.
  • [14] Dykas S., Majkut M., Strozik M., Smołka K.: An attempt to make a reliable assessment of the wet steam flow field in the de Laval nozzle. Heat Mass Transfer 54(2018), 2675–2681.
  • [15] Dykas S., Majkut M., Strozik M., Smołka K.: Comprehensive investigations into thermal and flow phenomena occurring in the atmospheric air two-phase flow through nozzles. Int. J. Heat Mass Tran. 114(2017), 1072–1085.
  • [16] Dykas S., Smołka K., Majkut M., Strozik M.: Analysis of the thermal flow phenomena in transonic flows of moist air in nozzles. Publ. House Silesian Univer. Technol., Gliwice 2018 (in Polish).
  • [17] Eberle T., Schatz M.: Experimental study of droplet size and wetness in a model steam turbine using light extinction measurements. In: Proc. 25th Turbomachinery Workshop, Gdańsk/Krzeszna 2011.
  • [18] Horvath H.: Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics. J. Quant. Spectrosc. RA 110(2009), 787–799.
  • [19] Ansys CFX Theory Guide (2017) ANSYS 17.1.
  • [20] Kolovratník M., Bartoš O.: CTU Optical probes for liquid phase detection in the 1000 MW steam turbine. EPJ Web of Conf. 92(2015), 02035.
  • [21] Ma L., Sanders S.T., Jeffries J.B., Hanson R.K.: Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor. Proc. Combust. Inst. 29(2003), 161–166.
  • [22] Puzyrewski R.: Theoretical and experimental studies on formation and growth of water drops in LP steam turbines. Trans. Inst. Fluid-Flow Mach. 42–44(1969), 289–303.
  • [23] Puzyrewski R., Gardzilewicz A., Baginska M.: Shock waves in condensing steam flowing through a Laval nozzle. Arch. Mech. 25(1973), 3, 393–409.
  • [24] Schatz M., Eberle T.: Experimental study of steam wetness in a model steam turbine rig: presentation of results and comparison with computational fluid dynamics data. Proc. IMechE A: J Power Energy 228(2014), 2, 129–142.
  • [25] Wróblewski W., Chmielniak T., Dykas S.: Models for water steam condensing flows, Arch. Thermodyn. 1(2012), 9, 67–86, doi: 10.2478/v10173-012-0003-2.
  • [26] Swithenbank J., Beer J.M., Taylor D.S., Abbot D., McCreath G.C.: A laser diagnostic technique for the measurement of droplet and particle size distribution. Prog. Aeronaut. Astronaut. 53(1977), 421–447.
  • [27] Thurber M.C. and Hanson R.K.: Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence. Exp. Fluids 30(2001), 93–101.
  • [28] Twomney S.: On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature. J. ACM (JACM) 10(1963), 1, 97–101.
  • [29] White A.J.: Condensation in steam turbine cascades. PhD thesis, University of Cambridge, Cambridge 1992.
  • [30] Wróblewski W., Dykas S., Gepert A.: Steam condensing flow in turbine channels. Int. J. Multiphase Flow 35(2009), 6, 498–506.
  • [31] Zhao H. and Ladommatos N.A.: Optical diagnostics for in-cylinder mixture formation measurements in IC engines. Prog. Energ. Combust. 24(1998), 297–336.
  • [32] Majkut M.: Advanced techniques of experimental research and visualization of the compressible gas flow in power engineering machinery. Publ. House Silesian Univer. Technol., Gliwice 2019 (in Polish).
  • [33] Bilaniuk N., Wong G.: Speed of sound in pure water as a function of temperature. J. Acoust. Soc. Am. 93(1993), 3, 1609–1612.
  • [34] IAPWS Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam, IAPWS Release 2007.
  • [35] McClements D.J.: Principles of ultrasonic droplet size determination in emulsions. Langmuir 12(1996), 14, 3454–3461.
  • [36] Petr V.: Wave propagation in wet steam. J. Mech. Eng. Sci. C 218(2004), 871–882.
  • [37] Šafaríka P., Novýb A., Jíchaa D., Hajšman M.: On the speed of sound in steam. Acta Polytech. CTU Praque 55(2015), 6, 422–426.
  • [38] Wagner W., Cooper J.R., Dittmann A., Kijima J., Kretzschmar H.-J., Kruse A., Mareš R., Oguchi K., Sato H., St’ocker I., Šifner O., Takaishi Y., Tanishita I., Trübenbach J., Willkommen Th.: IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. J. Eng. Gas Turb. Power 122(2000), 150–182.
  • [39] Young J. B., Guha A.: Normal shock-wave structure in two-phase vapor-droplet flows. J. Fluid Mech. 228(1991), 243–274.
Uwagi
The presented results were performed within the project TANGO 3 08/050/TAN19/0200 of The National Centre for Research and Development and Statutory Research Funds of the Silesian University of Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbfd3773-a7d6-4af6-8b67-a530ec9cbd47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.