PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of grain size and gas pressure on diffusion kinetics and CH 4 sorption isotherm on coal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a methodology for predicting the impact of the longwall shearer’s control parameter on methane emission rate to the working of a longwall based on computational fluid dynamics (CFD) methods. The methodology was applied to the Z-11a longwall panel conditions at the Jankowice Hard Coal Mine. The results of the methane emissions rate in the working of a longwall for three variations of the position of the longwall shearer are shown and discussed. The modelled issue’s geometry, numerical grid, assumptions, and boundary conditions are presented. The filtration parameters of goafs are discussed. Relationships to estimate the various sources of methane emissions into the air flowing around the longwall panel Z-11a are presented. The results of the model tests were compared with the mining data in the Z-11a longwall panel at the Jankowice Hard Coal Mine.
Rocznik
Strony
3--23
Opis fizyczny
Bibliogr. 58 poz., tab., wykr.
Twórcy
  • Strata Mechanics Research Institute of The Polish Academy of Sciences, 27 Reymonta Str., 30-059 Kraków, Poland
  • Strata Mechanics Research Institute of The Polish Academy of Sciences, 27 Reymonta Str., 30-059 Kraków, Poland
autor
  • Strata Mechanics Research Institute of The Polish Academy of Sciences, 27 Reymonta Str., 30-059 Kraków, Poland
  • AGH University of Kraków, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Strata Mechanics Research Institute of The Polish Academy of Sciences, 27 Reymonta Str., 30-059 Kraków, Poland
Bibliografia
  • [1] F. Colosimo et al., Biogenic methane in shale gas and coal bed methane: A review of current knowledge and gaps.Int. J. Coal Geol. 165,106-120 (2016). DOI: https://doi.org/10.1016/j.coal.2016.08.011.
  • [2] M. Mastalerz, A. Drobniak, D. Strapoć, W. Solano Acosta, J. Rupp, Variations in pore characteristics in high volatilebituminous coals: Implications for coal bed gas content. Int. J. Coal Geol. 76, 3, 205-216 (2008).DOI : https://doi.org/10.1016/j.coal.2008.07.006.
  • [3] T.A. Moore, Coalbed methane: A review. Int. J. Coal Geol. 101, 36-81 (2012).DOI : https://doi.org/10.1016/j.coal.2012.05.011.
  • [4] M. Bukowska, U. Sanetra, M. Wadas, Zonation of deposits of hard coals of different porosity in the Upper SilesianCoal Basin. Gospodarka Surowcami Mineralnymi 32 (1), 5-24 (2016).
  • [5] D.W. van Krevelen, J. Schuyer, Węgiel. Chemia węgla i jego struktura. Publishing house: Państwowe WydawnictwoNaukowe (1959).
  • [6] L. Gao, M. Mastalerz, A. Schimmelmann, The Origin of Coalbed Methane. In Coal Bed Methane: From Prospectto Pipeline, Elsevier 1104 Inc., pp. 7-29 (2014). DOI : https://doi.org/10.1016/B978-0-12-800880-5.00002-4.
  • [7] D. Strapoć et al., Biogeochemistry of microbial coal-bed methane. Annu. Rev. Earth Planet. Sci. 39, 617-656(2011). DOI: https://doi.org/10.1146/annurev-earth-040610-133343.
  • [8] A. Hosseini, M. Najafi, Determination of Methane Desorption Zone for the design of a drainage borehole Pattern(Case Study: E4 Panel of the Tabas Mechanized Coal Mine, Iran), Rudarsko-Geološko-Naftni Zbornik 36, 1 (2021).DOI: https://doi.org/10.17794/rgn.2021.1.6.
  • [9] M. Najafi, R. Rafiee, Development of a new index for methane drainageability of a coal seam using the fuzzy rockengineering system. Rudarsko-Geološko-Naftni Zbornik 34, 4 (2019). DOI : https://doi.org/10.17794/rgn.2019.4.4.
  • [10] Q. Zhang, X. Liu, B. Nie, W. Wu, R. Wang, Methane sorption behaviour on tectonic coal under the influence ofmoisture. Fuel 327, 125150 (2022). DOI : https://doi.org/10.1016/j.fuel.2022.125150.
  • [11] T. Gao, Q. Han, C. Deng, H. Zhang, Experimental Study on the Properties of Gas Diffusion in Various Rank Coalsunder Positive Pressure. ACS Omega 8, 10618-10628 (2023). DOI: https://doi.org/10.1021/acsomega.3c00716.
  • [12] G.R. King, T.M. Ertekin, A survey of mathematical models related to methane production from coal seams. Part 1.Empirical and equilibrium sorption models. Proc. Coalbed Methane Symp. The Univ. of Alabama, Tuscaloosa,125-138 (1989).
  • [13] G.R. King, T.M. Ertekin, A survey of mathematical models related to methane production from coal seams. Part II :Nonequilibrium sorption models. Proc. Coalbed Methane Symp. The Univ. of Alabama, Tuscaloosa, 139-155 (1989).
  • [14] S. Harpalani, R.A. Schraufnagel, Measurement of parameters impacting methane recovery from coal seams. InternationalJournal of Mining and Geo-Engineering 8, 369-384 (1990). DOI : http://doi.org/10.1007/BF00920648.
  • [15] S. Harpalani, R.A. Schraufnagel, Shrinkage of coal matrix with release of gas and its impact on permeability ofcoal. Fuel 69, 551-556 (1990). DOI : https://doi.org/10.1016/0016-2361(90)90137-F.
  • [16] P.J. Crosdale, B.B. Beamish, M. Valix, Coalbed methane sorption related to coal Composition. International Journalof Coal Geology 35, 147-158 (1998). DOI : https://doi.org/10.1016/S0166-5162(97)00015-3.
  • [17] T. Hobler, Dyfuzyjny ruch masy i absorber. Publishing house: Wydawnictwo Naukowo-Techniczne (1976).
  • [18] P. Naveen, M. Asif, K. Ojha, D.C. Panigrahi, H.B. Vuthaluru, Sorption Kinetics of CH4 and CO2 Diffusion in Coal:Theoretical and Experimental Study. Energy Fuels 31, 6825-6837 (2017).DOI : https://doi.org/10.1021/acs.energyfuels.7b00721.
  • [19] F. Han, A. Busch, B.M. Krooss, Z. Liu, J. Yang, CH4 and CO2 sorption isotherms and kinetics for different sizefractions of two coals. Fuel 108, 137-142 (2013). DOI: https://doi.org/10.1016/j.fuel.2011.12.014.
  • [20] H. Long, H. Lin, M. Yan, Y. Bai, X. Tong, X. Kong, S. Li, Adsorption and diffusion characteristics of CH4,CO2, and N2 in micropores and mesopores of bituminous coal: Molecular dynamics. Fuel 292, 120268 (2021).DOI: https://doi.org/10.1016/j.fuel.2021.120268.
  • [21] Y. Xu, X. Chen, J. Yu, Experimental study of the radial multi-scale dynamic diffusion model for gas-bearing coal.Mining of Mineral Deposits 16 (4), 80-86 (2022). DOI: https://doi.org/10.33271/mining16.04.080.
  • [22] Z. Pan, L.D. Connell, M. Camilleri, L. Connelly, Effects of matrix moisture on gas diffusion and flow in coal.Fuel 89 (11), 3207-3217 (2010). DOI : https://doi.org/10.1016/j.fuel.2010.05.038.
  • [23] W. Yang, L. Wang, K. Yang, S. Fu, C. Tian, R. Pan, Molecular insights on influence of CO2 on CH4 adsorptionand diffusion behaviour in coal under ultrasonic excitation. Fuel 355, 129519 (2024).DOI : https://doi.org/10.1016/j.fuel.2023.129519.
  • [24] J. Zhang, Experimental Study and Modeling for CO 2 Diffusion in Coals with Different Particle Sizes: Based onGas Absorption (Imbibition) and Pore Structure. Energy & Fuels 30 (1), 531-543 (2016).DOI : https://doi.org/10.1021/acs.energyfuels.5b02546.
  • [25] X. Jian, P. Guan, W. Zhang, Carbon dioxide sorption and diffusion in coals: Experimental investigation and modelling.Science China Earth Sciences 55 (4), 633-643 (2012). DOI: https://doi.org/10.1007/s11430-011-4272-4.
  • [26] A. Ciembroniewicz, A. Marecka, Kinetics of CO2 sorption for two Polish hard coals. Fuel 72 (3), 405-408 (1993).DOI : https://doi.org/10.1016/0016-2361(93)90062-7.
  • [27] C.R. Clarkson, R.M. Bustin, The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modelling study. 2. Adsorption rate modelling. Fuel 78 (11), 1345-1362 (1999).DOI : https://doi.org/10.1016/S0016-2361(99)00056-3.
  • [28] G. Staib, R. Sakurovs, E.M.A. Gray, A pressure and concentration dependence of CO2 diffusion in two Australianbituminous coals. International Journal of Coal Geology 116-117, 106-116 (2013).DOI : https://doi.org/10.1016/j.coal.2013.07.005.
  • [29] X. Cui, R.M. Bustin, G. Dipple, Selective transport of CO2, CH4, and N2 in coals: insights from modelling ofexperimental gas adsorption data. Fuel 83 (3), 293-303 (2004).DOI : https://doi.org/10.1016/j.fuel.2003.09.001.
  • [30] A. Liu, P. Liu, S. Liu, Gas diffusion coefficient estimation of coal: A dimensionless numerical method and itsexperimental validation. International Journal of Heat and Mass Transfer 327, 120336 (2020).DOI : https://doi.org/10.1016/j.ijheatmasstransfer.2020.120336.
  • [31] G. Wang, T. Ren, Q. Qi, J. Lin, Q. Liu, J. Zhang, Determining the diffusion coefficient of gas diffusion in coal:Development of numerical solution. Fuel 196, 47-58 (2017). DOI : https://doi.org/10.1016/j.fuel.2017.01.077.
  • [32] D. Charrière, Z. Pokryszka, P. Behra, Effect of pressure and temperature on diffusion of CO2 and CH4 into coalfrom the Lorraine basin (France). International Journal of Coal Geology 81 (4), 373-380 (2010).DOI : https://doi.org/10.1016/j.coal.2009.03.007.
  • [33] Y. Zhang, W. Xing, S. Liu, Y. Liu, M. Yang, J. Zhao, Y. Song, Pure methane, carbon dioxide, and nitrogen adsorptionon anthracite from China over a wide range of pressures and temperatures: experiments and modelling. RS CAdvances 5 (65), 52612-52623 (2015). DOI : https://doi.org/10.1039/C5RA 05745K.
  • [34] H. Hu, L. Du, Y. Xing, X. Li, Detailed study on self- and multicomponent diffusion of CO2-CH4 gas mixture incoal by molecular simulation. Fuel 187, 220-228 (2017). DOI : https://doi.org/10.1016/j.fuel.2016.09.056.
  • [35] C. Fan, D. Elsworth, S. Li, L. Zhou, Z. Yang, Y. Song, Thermo-hydro-mechanical-chemical couplings controllingCH4 production and CO2 sequestration in enhanced coalbed methane recovery. Energy 173, 1054-1077 (2019).DOI : https://doi.org/10.1016/j.energy.2019.02.126.
  • [36] Y. Zhao, Y. Feng, X. Zhang, Molecular simulation of CO2 /CH4 self- and transport diffusion coefficients in coal.Fuel 165, 19-27 (2016). DOI : https://doi.org/10.1016/j.fuel.2015.10.035.
  • [37] A . Keshavarz, R. Sakurovs, M. Grigore, M. Sayyafzadeh, Effect of maceral composition and coal rank on gasdiffusion in Australian coals. International Journal of Coal Geology 173, 65-75 (2017).DOI : https://doi.org/10.1016/j.coal.2017.02.005.
  • [38] B. Dutka, K. Godyń, Coalification as a Process Determining the Methane Adsorption Ability of Coal Seams.Archives of Mining Sciences 66 (2), 181-195 (2021). DOI : https://doi.org/10.24425/ams.2021.137455.
  • [39] M. Karbownik, J. Krawczyk, T. Schlieter, The Unipore and Bidisperse Diffusion Models for Methane in Hard CoalSolid Structures Related to the Conditions in the Upper Silesian Coal Basin. Archives of Mining Sciences 65 (3),591-603 (2020). DOI : https://doi.org/10.24425/ams.2020.134136.
  • [40] K. Godyń, B. Dutka, The impact of the degree of coalification on the sorption capacity of coals from the ZofiówkaMonocline. Archives of Mining Sciences 63 (3), 727-746 (2018). DOI : https://doi.org/10.24425/123694.
  • [41] T. Adsul, S. Ghosh, S. Kumar, B. Tiwari, S. Dutta, A.K. Varma, Biogeochemical Controls on Methane Generation:A Review on Indian Coal Resources. Minerals 13 (5), 695 (2023). DOI : https://doi.org/10.3390/min13050695.
  • [42] C. Laxminarayana, P.J. Crosdale, Role of coal type and rank on methane sorption characteristics of Bowen Basin,Australia coals. International Journal of Coal Geology 40 (4), 309-325 (1999).DOI : https://doi.org/10.1016/S0166-5162(99)00005-1.
  • [43] H. Koptoń, Impact Assessment of Sorption Properties of Coal on Methane Emissions Into Longwall Working.Archives of Mining Sciences 65 (3), 605-625 (2020). DOI : https://doi.org/10.24425/ams.2020.134137.
  • [44] M. Gawor, N. Skoczylas, A. Pajdak, M. Kudasik, Nonlinear and Linear Equation of Gas Diffusion in Coal – Theoryand Applications. Applied Sciences 11, 5130 (2021). DOI : https://doi.org/10.3390/app11115130.
  • [45] W. Zhao, Y. Cheng, Z. Pan, K. Wang, S. Liu, Gas diffusion in coal particles: A review of mathematical models andtheir applications. Fuel 252, 77-100 (2019). DOI : https://doi.org/10.1016/j.fuel.2019.04.065.
  • [46] N. Skoczylas, J. Topolnicki, The coal-gas system – the effective diffusion coefficient. International Journal of Oil,Gas and Coal Technology 12 (4), 412 (2016). DOI : https://doi.org/10.1504/IJOGCT.2016.077300.
  • [47] J. Crank, The Mathematics of diffusion. 2nd ed. Oxford Univ. Press, London (1975).
  • [48] N. Skoczylas, A. Pajdak, M. Kudasik, L. Braga, CH4 and CO2 sorption and diffusion carried out in various temperatureson hard coal samples of various degrees of coalification (NCN nr 2016/23/B/ST8/00744). Journal ofNatural Gas Science and Engineering 81, 103449 (2020). DOI : https://doi.org/10.1016/j.jngse.2020.103449.
  • [49] M. Wierzbicki, A. Pajdak, P. Baran, K. Zarębska, Isosteric heat of sorption of methane on selected hard coals.Przemysł Chemiczny 98/4, 625-629 (2019). DOI : http://dx.doi.org/10.15199/62.2019.4.22.
  • [50] M. Kudasik, The manometric sorptomat – an innovative volumetric instrument for sorption measurements performedunder isobaric conditions. Measurement Science and Technology 27 (3), 035903 (2016).DOI : https://doi.org/10.1088/0957-0233/27/3/035903.
  • [51] C. Li, H. Xue, P. Hu, C. Guan, W. Liu, Effect of stress on the diffusion kinetics of methane during gas desorption incoal matrix under different equilibrium pressures. Journal of Geophysics and Engineering 15 (3), 841-851 (2018).DOI: https://doi.org/10.1088/1742-2140/aaa8ad.
  • [52] A. Pajdak, Parameters of N2 and CO2 adsorption onto coal at various temperatures. In Proceedings of the 18thInternational Multidisciplinary Scientific Geoconference SGEM, Albena, Bulgaria, p. 633-640 (2018).
  • [53] M. Skiba, M. Młynarczuk, Estimation of coal’s sorption parameters using artificial neural networks. Materials 13(23), 5422 (2020). DOI : https://doi.org/10.3390/ma13235422.
  • [54] K. Godyń, B. Dutka, M. Chuchro, M. Młynarczuk, Synergy of Parameters Determining the Optimal Properties ofCoal as a Natural Sorbent. Energies 13 (8), 1967 (2020). DOI : https://doi.org/10.3390/en13081967.
  • [55] M. Kudasik, Results of comparative sorption studies of the coal-methane system carried out by means of an originalvolumetric device and a reference gravimetric instrument. Adsorption 23 (4), 613-626 (2017).DOI : https://doi.org/10.1007/s10450-017-9881-6.
  • [56] C.R. Clarkson, R.M. Bustin, Binary gas adsorption/desorption isotherms: effect of moisture and coal compositionupon carbon dioxide selectivity over methane. International Journal of Coal Geology 42, 241-271 (2000).DOI: https://doi.org/10.1016/S0166-5162(99)00032-4.
  • [57] C.R. Clarkson, PhD thesis, The effect of coal composition, moisture content, and pore volume distribution uponsingle and binary gas equilibrium and nonequilibrium adsorption: implications for gas content determination, TheUniversity of British Columbia, Vancouver, Canada (1998).
  • [58] C.K. Man, J. Jacobs, J.R. Gibbins, Selective maceral enrichment during grinding and effect of particle size on coaldevolatilisation yields. Fuel Processing Technology 56 (3), 215-227 (1998).DOI : https://doi.org/10.1016/S0378-3820(98)00060-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbfc0667-97f9-4fba-95a5-71e9cc793fcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.