Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we study the time-domain decomposition of optimal control problems for systems of semilinear hyperbolic equations and provide an in-depth well-posedness analysis. This is a continuation of our work, Krug et al. (2021) in that we now consider mixed two-point boundary value problems. The more general boundary conditions significantly enlarge the scope of applications, e.g., to hyperbolic problems on metric graphs with cycles. We design an iterative method based on the optimality systems that can be interpreted as a decomposition method for the original optimal control problem into virtual control problems on smaller time domains.
Czasopismo
Rocznik
Tom
Strony
427--455
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Data Science, Cauerstr. 11, 91058 Erlangen, Germany
autor
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Data Science, Cauerstr. 11, 91058 Erlangen, Germany
autor
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Data Science, Cauerstr. 11, 91058 Erlangen, Germany
autor
- Trier University, Department of Mathematics, Universitätsring 15, 54296 Trier, Germany
autor
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Data Science, Cauerstr. 11, 91058 Erlangen, Germany
Bibliografia
- Barker, A. T. and Stoll, M. (2015) Domain decomposition in time for PDE-constrained optimization. In: Computer Physics Communications 197, 136–143. doi: 10.1016/ j.cpc.2015.08.025.
- Bastin, G. and Coron, J.-M. (2016) Stability and Boundary Stabilization of 1-D Hyperbolic Systems, 88. Progress in Nonlinear Differential Equations and their Applications. Subseries in Control. Birkhäuser/Springer, doi: 10.1007/978-3-319-32062-5.
- Benamou, J.-D. (1996) A domain decomposition method with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations. SIAM Journal on Numerical Analysis 33(6), 2401–2416. doi: 10. 1137 / S0036142994267102.
- Casas, E. and Fernandez, L. A. (1989) A GreenâĂŹs formula for quasilinear elliptic operators. Journal of Mathematical Analysis and Applications 142(1), 62–73. doi: 10.1016/0022- 247X(89)90164-9.
- Gander, M. J. and Kwok, F. (2016) Schwarz methods for the time-parallel solution of parabolic control problems. Domain Decomposition Methods in Science and Engineering XXII. Lecture Notes in Computational Science and Engineering, 104. Springer, Cham, 207–216. doi: 10.1007/978-3-319-18827-0_19.
- Gander, M. J., Kwok, F. and Salomon, J. (2020) ParaOpt: a parareal algorithm for optimality systems. SIAM Journal on Scientific Computing 42(5), A2773–A2802. doi: 10.1137/ 19M1292291.
- Gander, M. J. and Vandewalle, S. (2007) Analysis of the parareal time-parallel time-integration method. SIAM Journal on Scientific Computing 29(2), 556–578. doi: 10.1137/ 05064607X.
- Glowinski, R. and Le Tallec, P. (1990) Augmented Lagrangian interpretation of the nonoverlapping Schwarz alternating method. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989). SIAM, Philadelphia, PA, 224–231.
- Gugat, M. (2021) On the turnpike property with interior decay for optimal control problems. Mathematics of Control, Signals, and Systems 33(2), 237–258. doi: 10.1007/ s00498-021-00280-4.
- Gugat, M., Giesselmann, J. and Kunkel, T. (2021) Exponential synchronization of a nodal observer for a semilinear model for the flowin gas networks. IMA Journal of Mathematical Control and Information (Sept. 2021). doi: 10.1093/imamci/dnab029.
- Hante, F. M., Leugering, G., Martin, A., Schewe, L. and Schmidt, M. (2017) Challenges in Optimal Control Problems for Gas and Fluid Flow in Networks of Pipes and Canals: From Modeling to Industrial Applications. In: P. Manchanda, R. Lozi and A. H. Siddiqi, eds., Industrial Mathematics and Complex Systems: Emerging Mathematical Models, Methods and Algorithms. Industrial and Applied Mathematics, 77–122. doi: 10.1007/978-981-10-3758-0_5.
- Heinkenschloss, M. (2005) A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems. Journal of Computational and Applied Mathematics 173(1), 169–198. doi: 10.1016/j.cam.2004.03.005.
- Krug, R., Leugering, G., Martin, A., Schmidt, M. and Weninger, D. (2021) Time-Domain Decomposition for Optimal Control Problems Governed by Semilinear Hyperbolic Systems. SIAM Journal on Control and Optimization. url: http://www. optimization-online. org/DB_HTML/2020/11/8132.html. Forthcoming.
- Lagnese, J. E. and Leugering, G. (2002) Time domain decomposition in final value optimal control of the Maxwell system. ESAIM: Control, Optimisation and Calculus of Variations 8, 775–799. doi: 10.1051/cocv:2002042.
- Lagnese, J. E. and Leugering, G. (2003) Time-domain decomposition of optimal control problems for the wave equation. Systems & Control Letters 48(3-4), 229–242. doi: 10.1016/ S0167-6911(02)00268-2.
- Lagnese, J. E. and Leugering, G. (2004) Domain decomposition methods in optimal control of partial differential equations. International Series of Numerical Mathematics 148. Birkhäuser Verlag, Basel. doi: 10.1007/978-3-0348-7885-2.
- Leugering, G., Martin, A., Schmidt, M. and Sirvent, M. (2017) Nonoverlapping domain decomposition for optimal control problems governed by semilinear models for gas flow in networks. Control and Cybernetics 46(3), 191–225.
- Leugering, G. and Rodriguez, C. (2020) Boundary feedback stabilization for the intrinsic geometrically exact beam model. Technical report. url: https://arxiv.org/abs/1912.02543.
- Leugering, G. and Schmidt, J. G. (2002) On the modelling and stabilization of flows in networks of open canals. SIAM Journal on Control and Optimization 41(1), 164–180. doi: 10.1137/S0363012900375664.
- Lions, J.-L. (1990) On the Schwarz alternating method. III. A variant for nonoverlapping subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989). SIAM, Philadelphia, PA, 202–223.
- Lions, J.-L. (1971) Optimal Control of Systems Governed by Partial Differential Equations. Die Grundlehren der mathematischen Wissenschaften, Band 170. Translated from French by S. K. Mitter. Springer-Verlag, New York-Berlin.
- Lions, J.-L, Maday, Y. and Turinici, G. (2001) Résolution d’EDP par un schéma en temps ”pararéel”. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 332(7), 661–668. doi: 10.1016/S0764-4442(00)01793-6.
- Maday,Y., Salomon, J. and Turinici, G. (2006) Monotonic time-discretized schemes in quantum control. Numerische Mathematik 103(2), 323–338. doi: 10.1007/s00211- 006-0678-x.
- Maday, Y. and Turinici, G. (2002) A parareal in time procedure for the control of partial differential equations. Comptes Rendus Mathématique. Académie des Sciences. Paris 335(4), 387–392. doi: 10.1016/S1631-073X(02)02467-6.
- Prodi, G., ed. (2010) Problems in Non-Linear Analysis. Centro Internazionale Matematico Estivo (C.I.M.E.) 55 Summer Schools. Springer, Heidelberg; Fondazione C.I.M.E., Florence.
- Roubicek, T. (2005) Nonlinear Partial Differential Equations with Applications. International Series of Numerical Mathematics, 153. Birkhäuser Verlag, Basel. doi: 10. 1007/978-3-0348-0513-1.
- Schaefer, H. (1957) Über die Methode sukzessiver Approximationen. Jahresbericht der Deutschen Mathematiker-Vereinigung 59, 131–140.
- Ulbrich, S. (2007) Generalized SQP methods with ”parareal” time-domain decomposition for time-dependent PDE-constrained optimization. In: Real-time PDE-constrained Optimization. Computational Science&Engineering 3, SIAM, 145–168. doi: 10 . 1137 / 1 . 9780898718935.ch7.
- Vrabie, I. I. (2003) C0-Semigroups and Applications. North-Holland Mathematics Studies 191. North-Holland Publishing Co., Amsterdam.
- Wu, S.-L. and Huang, T.-Z. (2018) A fast second-order parareal solver for fractional optimal control problems. Journal of Vibration and Control 24(15), 3418–3433. doi: 10.1177/ 1077546317705557.
- Wu, S.-L. and Liu, J. (2020) A parallel-in-time block-circulant preconditioner for optimal control of wave equations. SIAM Journal on Scientific Computing 42(3), A1510–A1540. doi: 10.1137/19M1289613.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbf59e19-f4b5-4bd0-9243-4f296042570d