PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power-to-gas technologies in terms of the integration with gas networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a situation of surplus electricity production from fluctuating renewable energy sources, the optimal allocation, capacity and security of energy storage will play a pivotal role in the management of energy systems. In this context, highly flexible storage facilities providing access to stored energy at very short times are gaining in importance. Power-to-gas technologies combined with the injection of the produced gas to the natural gas network create the possibility of using the existing natural gas infrastructure to store large amounts of electricity converted into chemical energy of the fuel. This paper provides overview of selected demonstration projects carried out in this field. The literature review of the sensitivity of the elements of the gas value chain to the increased hydrogen concentrations is conducted. Next, the results of the simulation study of the effect of hydrogen injection on the hydraulic properties of a gas distribution network providing gas to 1167 customers are presented.
Rocznik
Tom
Strony
85--103
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Nowowiejska 25, 00-653 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Nowowiejska 25, 00-653 Warszawa, Poland
Bibliografia
  • 1] Kiciński J.: New ideas in distributed cogeneration and power engineering. Trans. Inst. Fluid-Flow Mach. 127(2015), 7–25.
  • [2] Lund H., stergaard P.A., Connolly D., Mathiesen B.V.: Smart energy and smart energy systems. Energy (2017), http://dx.doi.org/10.1016/j.energy.2017.05.123
  • [3] Schneider G.: Storage of wind power in natural gas grids – Power to Gas Falkenhagen. In: European Gas Technology Conf., EGATEC2013, Paris 2013.
  • [4] Götz M., Lefebvre J., M¨rs F., Koch A. M., Graf F., Bajohr S., Reimert R., Kolb T.: Renewable Power-to-Gas: A technological and economic review. Renew. Energ. 85(2016), 1371–1390.
  • [5] Gahleitner G.: Hydrogen from renewable electricity: An international review of power-togas pilot plants for stationary applications. Int. J. Hydrogen Energ. 5(2013), 5, 2039–2061.
  • [6] Ursua A., Gandia L.M., Sanchis P.: Hydrogen production from water electrolysis: current status and future trends. Proc. IEEE 100(2012), 2, 410–426.
  • [7] Bensmann B., Hanke-Rauschenbach R., Müller-Syring G., Henel M., Sundmacher K.: Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications. Appl. Energ. 167(2016), 107–124.
  • [8] Melaina M.W., Antonia O., Penev M.: Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues. Tech. Rep. NREL/TP-5600-51995, Golden CO. 2013.
  • [9] Iskov H., Rasmussen N.B.: Global screening of projects and technologies for Power-to-Gas and Bio-SNG. A reference report. Danish Gas Technology Centre, Hrsholm 2013.
  • [10] Grond L., Schulze P., Holstein J.: Systems analyses Power to Gas: Technology review. TKI Gas project TKIG01038, DNV KEMA, Groningen 2013.
  • [11] Qadrdan M., Abeysekera M., Chaudry M., Wu J., Jenkins, N.: Role of power-to-gas in an integrated gas and electricity system in Great Britain. Int. J. Hydrogen Energ. 40(2015), 17, 5763–5775.
  • [12] Estermann T., Newborough M., Sterner M.: Power-to-gas systems for absorbing excess solar power in electricity distribution networks. Int. J. Hydrogen Energ. 41(2016), 32, 13950–13959.
  • [13] Müller-Syring G.: Energiespeicherung in Erdgasnetzen Power-to-Gas. In: Fachtagung Erdgas Umwelt Zukunft, Leipzig 2012.
  • [14] Health and Safety Executive. The Gas Safety (Management) Regulations 1996 (GSMR)
  • [15] DVGW-Arbeitsblatt G 262:2011-09 Nutzung von Gasen aus regenerativen Quellen in der öffentlichen Gasversorgung (in German).
  • [16] Müller-Syring G., Henel M., Köppel W., Mlaker H., Sterner M., Höcher T.: Entwicklung von modularen Konzepten zur Erzeugung, Speicherung und Einspeisung von Wasserstoff und Methan ins Erdgasnetz. Projekt G1-07-10 DVGW Bonn 2013 (in German).
  • [17] Altfeld K., Pinchbeck D.: Admissible hydrogen concentrations in natural gas systems. DIV Deutscher Industrieverlag, gas for energy 3(2013), 1–12.
  • [18] DIN 51624:2008-02 Kraftstoffe für Kraftfahrzeuge – Erdgas Anforderungen und Prüfverfahren (in German).
  • [19] ISO 11439:2013 Gas cylinders – High pressure cylinders for the on-board storage of natural gas as a fuel for automotive vehicles.
  • [20] Śmiałowski M. Hydrogen in Steel. Effect of Hydrogen on Iron and Steel During Production, Fabrication, and Use. Pergamon Press, Reading 1962.
  • [21] Huang Z., Zhang Y., Zeng K., Liu B., Wang Q., Jiang D.: Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures. Combus. Flame 146(2006), 1, 302–311.
  • [22] Zhang M., Wang J., Xie Y., Jin W., Wei Z., Huang Z., Kobayashi H.: Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames. Int. J. Hydrogen Energ. 38(2013), 26, 11421–11428.
  • [23] Tabkhi, F., Azzaro-Pantel, C., Pibouleau, L., Domenech, S.: A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection. Int. J. Hydrogen Energ. 33(2008), 21, 6222–6231.
  • [24] Gondal I.A., Sahir M.H.: Prospects of natural gas pipeline infrastructure in hydrogen transportation. Int. J. Energy Res. 36(2012), 15, 1338–1345.
  • [25] André J., Auray S., De Wolf D., Memmah M. M., Simonnet A.: Time development of new hydrogen transmission pipeline networks for France. Int. J. Hydrogen Energ. 39(2014), 20, 10323–10337.
  • [26] Abeysekera M, Wu J, Jenkins N, Rees M.: Steady state analysis of gas networks with distributed injection of alternative gas. Appl. Energ. 164(2015), 991–1002.
  • [27] Clegg S., Mancarella P.: Storing renewables in the gas network: modelling of power-togas seasonal storage flexibility in low-carbon power systems. IET Gener. Transm. Distrib. 10(2016), 3, 566–575.
  • [28] Osiadacz A.J.: Simulation and analysis of gas networks. Gulf Publishing Company, Houston 1987.
  • [29] Osiadacz A.J., Chaczykowski M., Kotyński Ł., Zwiewka T.: Steady-state simulation of the gas network in the city of Chełmno. In: 15th GAZTERM Conf., Międzyzdroje 2012 (in Polish).
  • [30] Osiadacz A.J.: Steady-state simulation of gas networks. Fluid Systems, Warszawa 2001 (in Polish).
  • [31] Fluid Systems, SimNet SSV–Technical documentation of the software, ver. 6.1, 2016 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbf4904f-2033-44b5-b02a-c8aeeed363ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.