Identyfikatory
Warianty tytułu
Determination of the respiratory rate based on spectral analysis of the PPG period variability
Języki publikacji
Abstrakty
W artykule opisano algorytm do wyznaczania częstości oddychania na podstawie analizy widmowej sygnału reprezentującego zmienność okresu fali tętna. Falę tętna zarejestrowano za pomocą czujnika fotopletyzmograficznego (tzw. PPG) umieszczonego na placu ręki. Do przetwarzania sygnału PPG zaproponowano zastosowanie analizy falkowej. Przeprowadzono także ocenę dokładności opracowanej metody wykorzystując sygnał referencyjny, który reprezentuje przepływ powietrza w czasie wydechu.
The arterial pressure waveform contains valuable information regarding the respiratory rate. This paper describes the algorithm developed for estimating the respiratory rate by analyzing the period variability of the peripheral pulse wave. To record a pulse wave at the finger, a transmissiontype photoplethysmographic sensor was used. PPG signals were collected from 10 healthy subjects during free breathing, and breath holding over a period of 3-min using a data acquisition system (Fig. 1). The reference breathing rate was determined from the airflow signal recorded simultaneously with the PPG signal (Figs. 7 and 8). Firstly, the PPG signal was detrended and denoised using the wavelet transform (Fig. 2 and 3). Based on the locations of the maximum points, all periods were detected and the tachogram was constructed. The signal representing the period variability (PPV) was obtained by interpolating the envelope of the tachogram with a cubic polynomial function (Fig. 5). Then, fluctuations extracted by the DWT from the PPV signal were segmented into 10 s intervals. Using Burg’s method, the AR model based PSD was computed for each segment. Finally, the respiratory component was detected as the maximum in the frequency band of 0.150.4 Hz (Fig. 6). The obtained results show (Fig. 9) that the proposed method allows us to monitor the respiratory rate and to detect the induced apnea with the acceptable accuracy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
610--613
Opis fizyczny
Bibliogr. 9 poz., rys., wykr.
Twórcy
autor
- Politechnika Rzeszowska, Katedra Metrologii i Systemów Diagnostycznych, ul. W. Pola 2, 35-959 Rzeszów
autor
- Politechnika Rzeszowska, Katedra Metrologii i Systemów Diagnostycznych, ul. W. Pola 2, 35-959 Rzeszów
Bibliografia
- [1] Meredith D. J. et al.: Photoplethysmographic derivation of respiratory rate: a review of relevant physiology. Journal of Medical Engineering & Technology, vol. 36, pp. 1-7, 2012.
- [2] Jih-Sen Wong J-S., et al.: A comparative study of pulse rate variability and heart rate variability in healthy subjects. J Clin Monit Comput, vol. 26, pp. 107-114, 2012.
- [3] Karlen W. et al.: Multiparameter respiratory rate estimation from photoplethysmogram. IEEE Tran. Biomed. Eng., vol. 60, pp.1946-1953, 2013.
- [4] Lázaro J. et al.: Deriving respiration from the pulse photoplethysmographic signal. Computing in Cardiology, vol. 38, pp. 713-716, 2011.
- [5] Seo H. et al.: Performance improvement of pulse oximetry - based respiration detection by selective mode bandpass filtering. Ergonomics and Health Aspects, LNCS 4566, pp. 300-308, 2007.
- [6] Lee J., Chon K. H.: Respiratory rate extraction via an autoregressive model using the optimal parameter search criterion. Annals of Biomedical Engineering, vol. 38, pp. 3218-3225, 2010.
- [7] Chon Ki. H., Dash S., Ju K.: Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation. IEEE Tran. Biomed. Eng., vol. 56, pp. 2054-2063, 2009.
- [8] Mallat S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego-London, 1998.
- [9] Broersen P. M. T., de Waele S.: The Burg algorithm for segments. IEEE Trans. on Signal Processing, vol. 48, pp. 2876-2880, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbf3f8a9-625f-408e-a89d-0605c90e1877