PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffusion with chemical reaction – assessment of the accuracy of an approximate kinetic model for spherical pellets

Autorzy
Identyfikatory
Warianty tytułu
PL
Dyfuzja z reakcją chemiczną – ocena dokładności przybliżonego modelu kinetycznego dla ziaren kulistych
Języki publikacji
EN
Abstrakty
EN
Diffusion with a first-order chemical reaction in a spherical pellet of a catalyst with third-type boundary conditions was considered; such a process can be described by a kinetic model based on the continued fraction approximation. Results of calculations obtained from an approximate kinetic model were compared with the exact solution. It was found that the application of this approximate model provides a good level of accuracy and requires short calculation times.
PL
Rozważono dyfuzję z reakcją chemiczną I rzędu w kulistym ziarnie katalizatora z warunkami brzegowymi III rodzaju. Taki proces można opisać modelem kinetycznym opartym na aproksymacji ułamkami łańcuchowymi. Wyniki obliczeń uzyskane z przybliżonego modelu kinetycznego porównano z rozwiązaniem ścisłym. Stwierdzono, że stosowanie przybliżonego modelu zapewnia dobrą dokładność wyników oraz krótkie czasy obliczeń.
Rocznik
Strony
19--30
Opis fizyczny
Bibliogr. 20 poz., wz., tab., wykr.
Twórcy
autor
  • Chair of Chemical and Process Engineering, Faculty of Chemical Engineering and Technology, Cracow University of Technology
autor
  • Chair of Chemical and Process Engineering, Faculty of Chemical Engineering and Technology, Cracow University of Technology
Bibliografia
  • [1] Glueckauf E., Theory of chromatography. Part 10. Formulae for diffusion into spheres and their application to chromatography, Transactions of the Faraday Society, Vol. 51, 1955, 1540–1551.
  • [2] Cruz P., Mendes A., Magalhaes F.D., High-order approximations for intra-particle mass transfer, Chemical Engineering Science, Vol. 59, 2004, 4393–4399.
  • [3] Georgiou A., Kupiec K., Nonlinear driving force approximations for intraparticle mass transfer in adsorption processes. Nonlinear isotherm systems with macropore diffusion control, Chemical Engineering Journal, Vol. 92, 2003, 185–191.
  • [4] Georgiou A., Asymptotically exact driving force approximation for intraparticle mass transfer rate in diffusion and adsorption processes: nonlinear isotherm systems with macropore diffusion control, Chemical Engineering Science, Vol. 59, 2004, 3591–3600.
  • [5] Yao C., A new intraparticle mass transfer rate model for cyclic adsorption and desorption in a slab, cylinder or sphere, Adsorption, Vol. 19, 2013, 77–81.
  • [6] Szukiewicz M., Petrus R., Approximate model for diffusion and reaction in a porous pellet and an effectiveness factor, Chemical Engineering Science, Vol. 59, 2004, 479–483.
  • [7] Georgiou A., Tabiś B., Metoda aproksymacyjna badania nieustalonego procesu dyfuzji i reakcji chemicznej w ziarnie katalizatora, Inżynieria Chemiczna i Procesowa, Vol. 16, 1995, 379–391.
  • [8] Goto M., Hirose T., Approximate rate equation for intraparticle diffusion with or without reaction, Chemical Engineering Science, Vol. 48, 1993, 1912–1915.
  • [9] Goto M., Smith J.M., McCoy B.J., Parabolic profile approximate (linear driving force model) for chemical reaction, Chemical Engineering Science, Vol. 45, 1990, 445–448.
  • [10] Lee J., Kim D.H., Global approximations of unsteady-state adsorption, diffusion, and reaction in a porous catalyst, AIChE Journal, Vol. 59, Issue 7, 2013, 2540–2548.
  • [11] Szukiewicz M.K., New approximate model for diffusion and reaction in a porous catalyst, AIChE Journal, Vol. 46, Issue 3, 2000, 661–665.
  • [12] Szukiewicz M.K., Approximate model for diffusion and reaction in a porous catalyst with mass-transfer resistances, AIChE Journal, Vol. 47, Issue 9, 2001, 2131–2135.
  • [13] Szukiewicz M.K., An approximate model for diffusion and reaction in a porous pellet, Chemical Engineering Science, Vol. 57, 2002, 1451–1457.
  • [14] Peralta Reyes E., Regalado Méndez A., Vidriales Escobar G., González Rugerio C.A., Approximate solution to the diffusion-reaction problem with nonlinear kinetics in transient systems, Innovations and Advanced Techniques in Computer and Information Sciences and Engineering, 2007, 133–138.
  • [15] Burghardt A., Berezowski M., Stability analysis of steady-state solutions for porous catalytic pellets: influence of the shape of the pellet, Chemical Engineering Science, Vol. 50, 1995, 661–671.
  • [16] Burghardt A., Berezowski M., Analysis of the bifurcation of oscillatory solutions in a porous catalytic pellets: influence of the order of reaction, Chemical Engineering Science, Vol. 51, 1996, 3307–3316.
  • [17] Lee J., Kim D.H., Simple high-order approximations for unsteady-state diffusion, adsorption and reaction in a catalyst: A unified method by a continued fraction for slab, cylinder and sphere geometries, Chemical Engineering Journal, Vol. 173, 2011, 644–650.
  • [18] Kupiec K., Gwadera M., Approximations for unsteady state diffusion and adsorption with mass transfer resistance in both phases, Chemical Engineering and Processing: Process Intensification, Vol. 65, 2013, 76–82.
  • [19] Gwadera M., Kupiec K. Batch adsorption in a finite volume reservoir – application of an approximate kinetic model, Technical Transaction, Vol. 1-Ch, 2014, 3–13.
  • [20] Burghardt A., Bartelmus G., Inżynieria reaktorów chemicznych, tom II. Reaktory dla układów heterogenicznych, PWN, Warszawa 2001.
Uwagi
EN
Section "Chemistry"
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbf10773-690f-45cd-8745-1c1acda2b55f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.