PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sustainable Landfilling as Final Step of Municipal Waste Management System

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zrównoważone składowiska jako końcowy etap systemu gospodarki odpadami komunalnymi
Języki publikacji
EN
Abstrakty
EN
This paper discusses the role of sustainable landfilling of municipal waste in the current systems of municipal waste management systems as the manner of final disposal of wastes. The actual data considering share of landfilling as final waste disposal in various countries all over the world allowed to asses importance of this method. Special attention was paid to sustainable landfilling in developing or undeveloped courtiers of low economic incomes. Then, the paradigm of sustainable landfilling was presented and the most effective methods of landfill isolation by liners were discussed. The compacted clay liners were presented as the gainful option for the developing countries. The main determinants of the compacted clay liners’ longterm liner sustainability were described as hydraulic conductivity, swell-shrinkage properties and, finally, ability of soil/substrate to sustain its hydraulic conductivity after cyclic drying and rewetting. Finally, possible application of low plasticity clays instead materials of high plasticity, prone to shrinking and swelling, to construction of sustainable compacted earthen liner was underlined.
PL
Praca przedstawia znaczenie zrównoważonego składowania odpadów komunalnych jako końcowego etapu ich utylizacji w ramach aktualnych systemów zagospodarowania odpadów komunalnych. W artykule zaprezentowano aktualne dane dotyczące procentowego udziału składowisk w końcowym zagospodarowywaniu odpadów komunalnych w różnych krajach na całym świecie. Zwrócono szczególna uwagę na rolę zrównoważonego składowania odpadów w krajach rozwijających się o niskich dochodach. Następnie zaprezentowano paradygmat zrównoważonych składowisk odpadów oraz przedyskutowano najefektywniejsze metody izolacji składowisk. Zagęszczone przesłony mineralne uznano jako atrakcyjną opcję dla krajów rozwijających się. Opisano najistotniejsze wyznaczniki długoterminowej zrównoważoności i trwałości zagęszczonych przesłon ilastych: przewodnictwo hydrauliczne, charakterystyki skurczu i pęcznienia oraz zdolność gruntu do utrzymania właściwości izolacyjnych po cyklicznym osuszaniu i nawilżaniu. Na koniec przedyskutowano możliwość stosowania iłów o niskiej plastyczności jako materiałów na przesłony mineralne zrównoważonych składowisk odpadów, w miejsce podatnych na skurz i pęcznienie wysokoplastycznych gruntów ilastych.
Czasopismo
Rocznik
Strony
147--155
Opis fizyczny
Bibliogr. 69 poz., fig.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
  • Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
autor
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. ALBRECHT B.A., BENSON, C.H., 2001, Ef-fect of desiccation on compacted natural clay, in: Journal of Geotechnical and Geoenviron-mental Engineering vol. 127, no 1, p. 67-75.
  • 2. AL-KHATIB I.S., MONOU M., ABU ZAHRA A.S.F., SHAHEEN H.Q., KASSINOS D., 2010, Solid waste characterization, quantification and management practices in developing countries. A case study: Nablus district – Palestine, in: Journal of Environmental Management, vol. 97, p. 1131-1138.
  • 3. ALLEN A., 2001, Containment landfills: the myth of sustainability, in: Engineering Geology, vol. 60, p. 3-19.
  • 4. ARCH J., 1998, Clay barriers in landfills, in: Environmental interactions of clays. Clays and environment, eds. Parker A., Rea J.E., Springer, Berlin, Germany.
  • 5. BAGCHI A., 1990, Design, construction and monitoring of sanitary landfill, John Wiley & Sons, New York, USA.
  • 6. BASMA A.A., AL-HOMOUD A.S., MALKAWI A.I.H., AL-BASHEBSHEH M.A., 1996, Swelling-shrinkage behavior of natural expansive clays, in: Applied Clay Science, vol. 11, p. 211-227.
  • 7. BELLO A.A., 2013, Hydraulic conductivity of three compacted reddish brown tropical soils, in: KSCE Journal of Civil Engineering, vol. 17, no 5, p. 939-948.
  • 8. BENSON C.H., EDIL T.B., WANG X., 2012, Evaluation of a final cover slide at landfill with recalculating leachate, in: Geotextiles and Ge-omembranes, vol. 35, p. 100-106.
  • 9. BENSON C.H., TRAST J.M., 1995, Hydraulic conductivity of thirteen compacted clays, in: Clays and Clay Materials, vol. 46, no 6, p. 669-681.
  • 10. BOUAZZA A., 2002, Geosynthetic clay liners, in: Geotextiles and Geomembranes, vol. 20, p. 3-17.
  • 11. BOYNTON S.S., DANIEL D.E., 1985, Hydrau-lic conductivity tests on compacted clay, in: ASCE Journal of Geotechnical Engineering, vol. 111, no 4, p. 465-478.
  • 12. BRENNAN R.B., HEALY M.G., MORRISON L., HYNES S., NORTON D., CLIFFORD E., 2016, Management of landfill leachate: The leg-acy of European Union Directives, in: Waste management, vol. 55, p. 355-363.
  • 13. BROGAARD L.K., STENTSOE, S., WIL-LUMSEN, H.C., CHRISTENSEN T.H., 2013, Quantifying capital goods for waste landfilling, in: Waste management Resources, vol. 31, p. 555-598.
  • 14. BUTT T.E., LOCKLEY E. and ODUYEMI K.O.K., 2008 Risk assessment of landfill dis-posal sites – State of the art, in: Waste Manage-ment, vol. 28, p. 952-964.
  • 15. CAO Y., PIECUCH I., 2012, The Role of State in Achieving Sustainable Development in Human Capital, Technology and Environmental Protection, in: Rocznik Ochrona Środowiska/ Annual Set Environment Protection, vol. 14, p. 214-328.
  • 16. CAPACCIONI B., CARAMIELLO C., TA-TANO F., VISCIONE A., 2011, Effects of temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill, in: Waste Manage-ment, vol. 31, p. 956-965.
  • 17. CHANG M., 2005, Three-dimensional stability analysis of the Kettleman Hills landfill slope failure based on observed sliding-block mechanism, in: Computers and Geotechnics, vol. 32, p. 587-599.
  • 18. CHEN Z., GONG H., ZHANG M., WU W., LIU Y., FENG J., 2011, Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction, in: Waste Management, vol. 31, p. 1059-1064.
  • 19. DANIEL D.E. and KOERNER R.M., 1995, Waste containment facilities. Guidance for Con-struction, Quality Assurance and Quality Con-trol of Liner and Cover Systems, ASCE Press, New York, USA.
  • 20. DANIEL D.E., WU Y.K., 1993, Compacted clay liners and covers for arid sites, in: Journal of Geotechnical Engineering, ASCE, vol. 119, no 2, p. 223-237.
  • 21. DepV, 2009, German landfill ordinance, Depo-nieverordnung.
  • 22. DOS MUCHANGOS L.S., TOKAI A., HANASHIMA A., 2015, Analyzing the struc-ture of barriers to municipal solid waste man-agement policy planning in Maputo city, Mozambique, in: Environmental Development, vol. 16, p. 76-89.
  • 23. EBINA T., MINJA J.A., NAGASE T., ON-ODERA Y., CHATTEREJE A., 2004, Correla-tion of hydraulic conductivity of clay-sand com-pacted specimens with clay properties, in: Ap-plied Clay Science, vol. 26, p. 3-12.
  • 24. EPA, 1993, Solid waste disposal facility crite-ria, Technical manual 530-R-93-017, US Envi-ronmental Protection Agency.
  • 25. ERSES YAY A.S., 2015, Application of life cycle assessment (LCA) for municipal solid waste management; a case study of Sakarya, in: Journal of Cleaner Production, vol. 94, p. 284-293.
  • 26. EU, 1999, Council Directive 99/31/EC of 26 April 1999 on the landfill of waste, Brussels, Council of the European Union.
  • 27. FRANUS W., FRANUS M., LATOSINSKA J.N., WOJCIK R., 2011, The use of spent glauconite in lightweight aggregate production. Boletin de la Sociedad Espanola de Ceramica y Vidrio. vol. 50, p. 193-200.
  • 28. GUERRERO L.A., MAAS G., HOGLAND W., 2013, Solid waste management challenges for cities in developing countries, in: Waste Management, vol. 33, p. 220-232.
  • 29. HEWITT P.J., PHILIP L.K., 1999, Problems of clay desiccation in composite lining systems. Engineering Geology, vol. 55, p. 107-113.
  • 30. HOLTZ R.D., KOVACS W.D., 1981, An introduction to geotechnical engineering, Prentice Hall, Englewood Cliffs, NJ, USA.
  • 31. JIM C.Y., 2013, Sustainable urban green strategies for compact cities in developed and developing economies, in: Urban Ecosystems, vol. 16, p. 741-761.
  • 32. Journal of Laws from 2013 item 523, 2013, Reg-ulation of the Minister of Environment of 30 April 2013 about landfilling of wastes (in Polish). Sejm of the Republic of Poland, Warsaw, Poland.
  • 33. KALKAN E., 2011, Impact of wetting-drying cycles on swelling behavior of clayey soils modified by silica fume, in: Applied Clay Science, vol. 52, p. 345-352.
  • 34. LANER D., CREST M., SCHRAFF H., MOR-RIS J. W. F. and BARLAZ, M. A., 2012, A review of approaches for the long-term management of municipal solid waste landfills, in: Waste Management, vol. 32, p. 498-512.
  • 35. LOU W.F., NAIR J., 2009, The impact of landfilling and composting on greenhouse gas emission – A review, in: Bioresource Technology, vol. 100, p. 3792-3798.
  • 36. MARSHALL R.E., FARAHBAKHSH K., 2013, Systems approaches to integrated solid waste management in developing countries, in: Waste Management, vol. 33, no 4, p. 988-1003.
  • 37. MIKSCH K., CEMA G., FELIS E., SO-CHACKI A., 2015, Nowoczesne techniki i technologie inżynierii środowiska, in: Rocznik Ochrona Środowiska/Annual Set Environment Protection, vol. 11, p. 833-857.
  • 38. MITCHELL J., HOOPER D., CAMPANELLA R., 1965, Permeability of compacted clay, in: Journal of Soil Mechanics and Foundation Division, vol. 91, p. 41-65.
  • 39. MITCHELL J., SEED R., SEED, H., 1990, Ket-tleman Hills Waste Landfill Slope Failure. In: Liner‐System Properties, in: ASCE Journal of Geotechnical Engineering, vol. 116, no 4, p. 647-668.
  • 40. MITCHELL J.K., 1993, Fundamentals of soil behavior, Wiley, New York.
  • 41. MUKHERJEE S., MUKHOPADHYAY S., HASHIM M.A., SEN GUPTA, B., 2014, Contemporary environmental issues of landfill leachate: assessment and remedies, in: Critical Reviews in Environmental Science and Technology, vol. 45, no 5, p. 472-590.
  • 42. MÜLLER W., JAKOB I., SEEGER A., TATKY-GERTH R., 2008, Long-term shear strength of geosynthetic clay liners, in: Geotex-tiles and Geomembranes, vol. 26, p. 130-144.
  • 43. NGOC U.N., SCHNITZER H., 2009, Sustaina-ble solutions for solid waste management in Southeast Asian countries, in: Waste Manage-ment, vol. 29, p. 1982-1995.
  • 44. OAKLEY S.M., JIMENEZ R., 2012, Sustainable sanitary landfills for neglected small cities in developing countries: The semimechanized trench method from Villanueva, Honduras, in: Waste Management, vol. 32, p. 2535-2551.
  • 45. OKOT-OKUMU J., NYENJE R., 2011, Munic-ipal solid waste management under decentralisation in Uganda, in: Habitat International, vol. 35, p. 537-543.
  • 46. OTHMAN S.N., NOOR Z.Z., ABBA A.H., YUSUF R.O., 2013, Review of life cycle assessment of integrated solid waste management in some Asian countries, in: Journal of Cleaner Production, vol. 43, p. 251-262.
  • 47. PAWŁOWSKI A., 2008, How many dimensions does sustainable development have?, in: Sustainable Development, vol. 16, no 2, p. 81-92.
  • 48. PAWŁOWSKI L. PAWŁOWSKI A., 2016, Wpływ sposobów pozyskiwania energii na realizację paradygmatów zrównoważonego roz-woju, in: Rocznik Ochrona Środowiska/Annual Set Environment Protection, vol. 18, no 2, p. 19-37.
  • 49. PERMANA A.S., TOWOLIOE S., AZIZ N.A., HO C.S., 2015, Sustainable solid waste management practices and perceived cleanliness in a low income city, in: Habitat International, vol. 49, p. 197-205.
  • 50. PIRES A., MARTINHO G., CHANG N.-B., 2011, Solid waste management in European countries: A review of system analysis techniques, in: Journal of Environmental Management, vol. 92, p. 1033-1050.
  • 51. ROWE R.K., QUIGLEY R.M., BOOKER J.R., 1995, Clayey barrier systems for waste disposal facilities, E & FN SPON, London, UK.
  • 52. SANTIBANEZ-AGUILAR J.E., PONCE-OR-TEGA J.M., GONZALEZ-CAMPOS J.B., SERNA-GONZALEZ M., EL-HALWAGI M.M., 2013, Optimal planning for the sustaina-ble utilization of municipal solid waste, in: Waste Management, vol. 33, p. 2607-2622.
  • 53. SHEKDAR A.V., 2009, Sustainable solid waste management: an integrated approach for Asian countries, in: Journal of Waste Management, vol. 29, p. 1438-1448.
  • 54. SIMON F.G., MÜLLER W.W., 2004, Standard and alternative landfill capping design in Germany, in: Environmental Science & Policy, vol. 7, p. 277-290.
  • 55. STARK T.D., WILLIAMSON T.A., EID H.T., 1996, HDPE geomembrane/geotextile interface shear strength, in: Journal of Geotechnical Engineering, vol. 122, no 3, p. 197-203 .
  • 56. STASZEWSKA E., PAWLOWSKA M., 2011, Characteristics of Emissions From Municipal Waste Landfills, in: Environment Protection Engineering, vol. 37, p. 119-130.
  • 57. SUCHORAB Z., BARNAT-HUNEK D., FRANUS M., LAGOD G., 2016, Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge, in: Materials, vol. 9, no. 5, Art. No. 317.
  • 58. WAGNER J., 2011, Incentivizing sustainable waste management, in: Ecological Economics, vol. 70, p. 585-594.
  • 59. WALKIEWICZ A., BULAK P., BRZEZIŃSKA M., WNUK E., BIEGANOWSKI A., 2016, Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic condition, in: Environmental Pollution, vol. 213, p. 403-411.
  • 60. WERLE S., DUDZIAK M., 2014, Gaseous fuels production from dried sewage sludge via air gasification, in: Waste Management & Re-search. vol. 32, p. 601-607.
  • 61. WHALLEY W.R., MATTHEWS G.P., FER-RARIS S., 2012, The effect of compaction and shear deformation of saturated soil on hydraulic conductivity, in: Soil & Tillage research, vol. 125, p. 23-29.
  • 62. WIDOMSKI M.K., GLEŃ, P., ŁAGÓD G., JAROMIN-GLEŃ K., 2015a, Sustainable development of one of the poorest province of the European Union: Lublin Voivodeship, Poland – attempt of assessment, in: Problemy Ekorozwoju/ Problems of Sustainable Development, vol. 10, no 2, p. 137-149.
  • 63. WIDOMSKI M.K., STĘPNIEWSKI W., HORN R., BIEGANOWSKI A., GAZDA L., FRANUS M., PAWLOWSKA M., 2015b, Shrink-swell potential, hydraulic conductivity and geotechnical properties of two clay materials for landfill liner construction, in: International Agrophysics, vol. 29, p. 365-375.
  • 64. WIDOMSKI M.K., 2016a, Sustainability of compacted clay liners and selected properties of clays, Monographs vol. 127, Komitet Inżynierii Środowiska PAN, Lublin.
  • 65. WIDOMSKI M.K., STĘPNIEWSKI W., HORN R., 2016b, Sustainability of Compacted Clays as Materials for Municipal Waste Landfill Liner,, in: Rocznik Ochrona Środowiska/Annual Set Environment Protection, vol. 18, no 2, p. 249-257.
  • 66. WILSON D.C., 1985, Long-term planning for solid waste management, in: Waste Management & Research, vol. 3, no 3, p. 203-216.
  • 67. WYSOKIŃSKI L. (ed.), 2007, Principles of as-sessing the suitability of cohesive soils of Poland for the construction of mineral insulating barriers (in Polish), ITB, Ministry of Environment, Warsaw, Poland.
  • 68. YESILLER N., MILLER C.J., INCI G., YALDO K., 2000, Desiccation and cracking of three compacted landfill liner soils, in: Engi-neering Geology, vol. 57, p. 105-121.
  • 69. ZHANG D.Q., TAN S.K., GERSBERG R.M., 2010, Municipal solid waste management in China: Status, problems and challenges, in: Journal of Environmental Management, vol. 91, p. 1623-1633.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbec929b-365e-489d-8b47-16ddf096fd4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.