PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization and optimization of spectrophotometric colour removal from dye containing wastewater by Coagulation-Flocculation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of Vigna unguiculata coagulant (VUC) for colour removal from acid dye was investigated in this study. The proximate, structure and morphology of the coagulant were investigated using standard official methods, Fourier-Transform Infrared (FTIR) spectrometer and scanning electron microscopy (SEM), respectively. Response surface methodology (RSM) using face-centred central composite design (FCCD) optimized four process variables including pH, coagulant dosage, dye concentration and time. The colour removal efficiency obtained from the optimization analysis was 99.26% at process conditions of pH 2, coagulant dosage 256.09 mg/l, dye concentration 16.7 mg/l and time 540 min. The verification experiments agreed with the predicted values having a standard error value of 1.96%. Overlay contour plot established optimum areas where the predicted response variable is in an acceptable range (≥ 70%) with respect to optimum conditions. The FCCD approach was appropriate for optimizing the process giving higher removal efficiency when compared to the main effect plots.
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, Faculty of Engineering and Technology, Madonna University, Elele, Nigeria
  • Department of Chemical Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
Bibliografia
  • 1. Vinicius, C., Flavio, B.F. & Karina, Q.D. (2013). Treatment of textile effluent containing indigo blue dye by a UASB reactor coupled with pottery clay adsorption. Acta Scientiarum Technology. 35, 53-58. DOI: 10.4025/actascitechnol.v35i1.13091.
  • 2. Zonoozi, M.H., Moghaddam, R.M., Arami, A.G. (2008). Removal of Acid Red 398 dye from aqueous solutions by coagulation/flocculation process. Environ. Eng. and Manage. J. 7, 695-699.
  • 3. Roop, G. & Meenakshi, G. (2005). Activated carbon Adsorption; Adsorptive removal of organics from water. Taylor and Francis Group. Pg 373-375.
  • 4. Liu, Y., Wang, J., Zheng, Y. & Wang, A. (2012). Adsorption of methylene blue by Kapok fibre treated by sodium chlorite optimized with response surface methodology. Chem. Eng. J. 184, 248-255. DOI: 10.1016/j.cej.2012.01.049.
  • 5. Shore, J. (2002). Colorants and auxiliaries organic chemistry and application properties. 2nd Ed. Bradford.
  • 6. Shi, B.Y., Li, G.H., Wang, D.S., Feng, C.H. & Tang, H.X. (2007). Removal of direct dyes by coagulation: the performance of preformed polymeric aluminium species. J. Hazard. Mater. 143, 567-574. DOI: 10.1016/j.jhazmat.2006.09.076.
  • 7. Edward, G. (1971). Synthetic dyes in biology, medicine, and chemistry. Academic press, London, England. DOI: 10.1086/407095.
  • 8. Yee, K.O., Fu, Y.L., Shi-Peng, S., Bai-Wang, Z., Can- Zeng, L. & Tai-Shung, C. (2014). Nanofiltration hollow fiber membrane for textile wastewater treatment: from lab-scale to pilot-scale studies. Chem. Eng. Sci. 114, 51-57. DOI: 10.1016/j.ces.2014.04.007.
  • 9. Qian-Cheng, X., Jue, W., Xiao, W., Bo-Zhi, C., Jia-Lin, G., Tian-Zhi, J., Shi-Peng, S. (2017). A hydrophilicity gradient control mechanism for fabricating delamination-free dual-layer membranes. J. Membr. Sci. 539, 392-402. DOI: 10.1016/j.memsci.2017.06.021.
  • 10. Gosavi, V.D. & Sharma, S. (2014). A general review of various treatment methods for textile wastewater. J. Environ. Sci. Comput. Sci. Eng. Technol. 3, 29-39.
  • 11. Khouni, I., Marrot, B., Moulin, P. & Amar, R.B. (2011). Decolourization of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes. Desalination 268, 27-37. DOI: 10.1016/j.desal.2010.09.046.
  • 12. Tzoupanos, N.D., Zouboulis, A.I. & Zhao, Y.C. (2008). The application of novel coagulant reagent (poly aluminium silicate chloride) for the post-treatment of landfill leachates. Chemosphere 73, 729-736. DOI: 10.1016/j.chemosphere.2008.06.051.
  • 13. Zhu, G., Zheng, H., Chen, W., Fan, W., Zhang, P. & Tshukudu, T. (2012). Preparation of a composite coagulant: Polymeric aluminium ferric sulphate (PAFS) for wastewater treatment. Desalination 285, 315-323. DOI: 10.1016/j.desal.2011.10.019.
  • 14. Gao, B.Y., Yue, Q.Y. & Wang, Y. (2007). Coagulation performance of poly aluminium silicate chloride (PASiC) for wastewater treatment. Sep. Purific. Technol. 56, 225-230. DOI: 10.1016/j.seppur.2007.02.003.
  • 15. Cheng, R., Liang, S., Wang, H. & Beuhler, M. (1994). Enhanced Coagulation for Arsenic Removal. American Water Works Association 86, 79-90. DOI: 10.1002/j.1551-8833.1994. tb06248.x.
  • 16. Beltrán-Heredia, J., Sánchez-Martín, J. (2008). Heavy metals removal from surface water with Moringa oleifera seed extract as flocculant agent. Fresenius Environmental Bulletin 17 (12), 2134-2140.
  • 17. Obiora-Okafo, I.A., Menkiti, M.C. & Onukwuli, O.D. (2014). Utilization of response surface methodology and factor design in micro organic particles removal from brewery wastewater by coagulation/flocculation technique. Inter. J. of Appl. Sci. and Maths. 1(1), 15-21.
  • 18. Papic, S., Koprivanac, N., Bozic, A.L. & Metes, A. (2004). Removal of some reactive dyes from synthetic wastewater by combined Al (111) coagulation/carbon adsorption process. Dyes pigments 62(2), 29-298. DOI: 10.1016/S0143-7208(03)00148-7.
  • 19. Flaten, P. (2001). Aluminum as a risk factor for Alzheimer’s disease with an emphasis on drinking water. Brain Res. Bull. 55 (2), 187-196. DOI: 10.1016/S0361-9230(01)00459-2.
  • 20. Mariângela, S.S.D., André, O.C. & Valdirene, M.G. (2003). Purification and molecular mass determination of a lipid transfer protein exuded from Vigna unguiculata seeds. Braz. J. Plant Physiol. 15, 417-421. DOI: 10.1590/S1677-04202003000300007.
  • 21. A.O.A.C. (1990). Official Methods of Analysis. 15th Edition. Association of Official Analytical Chemists. Washington DC, U.S.A.
  • 22. Moghaddam, S.S., Alavi Moghaddam, M.R. & Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. Journal of Hazard. Materials 175, 651-657. DOI: 10.1016/j.jhazmat.2009.10.058.
  • 23. Montgomery, D.C. (2001). Design and Analysis of Experiments. 5th Ed., John Wiley and Sons, New York.
  • 24. Montgomery, D.C. & Myers, R.H. (2002). Response surface methodology: process and product optimization using designed experiments. 2nd Ed. John Wiley and Sons, New York.
  • 25. Bolto, B. & Gregory, J. (2007). Organic polyelectrolyte in water treatment. Water Res. 41, 2301-2324. DOI:10.1016/j. watres.2007.03.012.
  • 26. Stuart, B.H. (2004). Infrared spectroscopy: Fundamentals and Applications. John Wiley and Sons. Ltd. Pg. 45-47. DOI: 10.1002/0470011149.
  • 27. Coates, J. (2000). Interpretation of Infrared Spectra, a Practical Approach in Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd, Chichester. Pg. 10815-10837. DOI: 10.1002/9780470027318.a5606.
  • 28. Zheng, Y. & Park, J. (2009). Characterization and coagulation performance of a novel inorganic polymer coagulant: Poly-zinc-silicate-sulphate. Colloids and Surfaces A: Physicochem. Eng. Aspects. 334, 147-154. DOI: 10.1016/j. colsurfa.2008.10.009.
  • 29. Bilal, M., Haroon, H., Gardazi, S.M.H., Butt, T.A., Pervez, A. & Mahmood, Q. (2017). Novel lingo cellulosic wastes for comparative adsorption of Cr(VI): equilibrium kinetics and thermodynamic studies. P. J. Chem. Technol. 19 (2), 6-15. DOI: 10.1515/pjct-2017-0021.
  • 30. Li, G. & Gregory, J. (1991). Flocculation and sedimentation of high turbidity waters. Water Res. 25, 1137-1143. DOI: 10.1016/0043-1354(91)90207-7.
  • 31. Beltran-Heredia, J., Sanchez-Martin, J., Davila-Acedo, M.A. (2011). Optimization of the synthesis of a new coagulant from a tannin extract. J. Hazard. Mater. 186, 1704-1712. DOI: 10.1016/j.jhazmat.2010.12.075.
  • 32. Zhu, G., Zheng, H., Zhang, Z., Tshukudua, T., Zhang, P. & Xiang, X. (2011). Characterization and coagulation-flocculation behaviour of polymeric aluminium ferric sulphate (PAFS). Chem. Eng. J. 178, 50-59. DOI: 10.1016/j.cej.2011.10.008.
  • 33. Obiora-Okafo, I.A. & Onukwuli, O.D. (2015). Optimization of a coagulation-flocculation process for colour removal from synthetic dye wastewater using natural organic polymers: Response surface methodology applied. Inter. J. of Scientific & Eng. Research 6 (12), 693-704.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbea3105-37a8-450f-96b6-653920e7d9b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.