PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy-efficient distributed estimation algorithm for wireless sensor networks based on covariance intersection with eigendecomposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper introduces and assesses the Eigenvalue Covariance Intersection (EVCI) algorithm for data fusion in Wireless Sensor Networks. The EVCI aims to enhance information fusion efficiency, reduce transmitted data, and potentially extend network lifespan. By conducting the eigendecomposition of covariance matrices, the EVCI evaluates the utility of eigenvectors and strategically employs only those positively impacting estimate accuracy. Through simulations and comparisons with the Covariance Intersection (CI) algorithm, the study demonstrates EVCI’s ability to maintain accuracy alongside with significant energy savings. The paper provides insights into popular data fusion algorithms, the concept of the EVCI, used formulas, and selected simulation results.
Rocznik
Strony
465--480
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., wzory
Twórcy
  • Military University of Technology, Faculty of Electronics, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Electronics, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Ammari, M. (Ed.) (2014). The Art of Wireless Sensor Networks: Volume 1: Fundamentals. Springer. https://doi.org/10.1007/978-3-642-40066-7
  • [2] Ammari, M. (Ed.) (2014). The Art of Wireless Sensor Networks: Volume 2: Advanced Topics and Applications. Springer. https://doi.org/10.1007/978-3-642-40009-4
  • [3] Parimala, K. (Ed.) (2022). Emerging Trends in Wireless Sensor Networks. IntechOpen. https://doi.org/10.5772/intechopen.95653
  • [4] Singh, M. K., Amin, S. I., Imam, S. A., Sachan, V. K., & Choudhary, A. (2018). A Survey of Wireless Sensor Network and its Types. 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), India, 326-330. https://doi.org/10.1109/ICACCCN.2018.8748710
  • [5] Zheng, J., & Jamalipour, A. (2009). Wireless Sensor Networks: A Networking Perspective. John Wiley & Sons. https://ieeexplore.ieee.org/servlet/opac?bknumber=5361027
  • [6] Suhonen, J., Kohvakka, M., Kaseva, V., Hämäläinen, T., & Hännikäinen, M. (2012). Low-Power Wireless Sensor Networks: Protocols, Services and Applications. Springer. https://doi.org/10.1007/978-1-4614-2173-3
  • [7] Yang S. (2014). Wireless Sensor Networks: Principles, Design and Applications. Springer. https://doi.org/10.1007/978-1-4471-5505-8
  • [8] Gaura, E., Girod, L., Brusey, J., Allen, M., & Challen, G. (2010). Wireless Sensor Networks: Deployments and Design Frameworks. Springer. https://doi.org/10.1007/978-1-4419-5834-1
  • [9] Ali, A. (2020). Military Operations Wireless Sensor Networks based Applications to Reinforce Future Battlefield Command System. 2020 IEEE 23rd International Multitopic Conference (INMIC), 1-6. https://doi.org/10.1109/INMIC50486.2020.9318168
  • [10] Pejanović Ðurišić, M., Tafa, Z., Dimić, G., & Milutinović, V. (2012). A survey of military applications of wireless sensor networks. 2012 Mediterranean Conference on Embedded Computing (MECO), Montenegro, 196-199. https://ieeexplore.ieee.org/document/6268958
  • [11] Kaniewski, P., & Pasek, P. (2019). Personal navigation system using ultrawideband technology. Przegląd Elektrotechniczny, 95, 136-139. https://doi.org/10.15199/48.2019.11.36
  • [12] Borges, L. M., Velez, F. J., & Lebres, A. S. (2014). Survey on the characterization and classification of wireless sensor network applications. IEEE Communications Surveys & Tutorials, 16(4), 1860-1890. https://doi.org/10.1109/COMST.2014.2320073
  • [13] Izadi, D., Abawajy, J. H., Ghanavati, S., & Herawan, T. (2015). A data fusion method in wireless sensor networks. Sensors, 15(2), 2964-2979. https://doi.org/10.3390/s150202964
  • [14] Chen, Y., Shu, J., Zhang, S., Liu, L., & Sun, L. (2009). Data Fusion in Wireless Sensor Networks. 2009 Second International Symposium on Electronic Commerce and Security, China, 504-509. https://doi.org/10.1109/ISECS.2009.170
  • [15] Fan, Z., Jie, Z., & Qian, Y. (2018). A Survey on Wireless Power Transfer based Charging Scheduling Schemes in Wireless Rechargeable Sensor Networks. 2018 IEEE 4th International Conference on Control Science and Systems Engineering (ICCSSE), China, 194-198. https://doi.org/10.1109/CCSSE.2018.8724809
  • [16] Zhaohua, L., & Mingjun, G. (2009). Survey on network lifetime research for wireless sensor networks. 2nd IEEE International Conference on Broadband Network & Multimedia Technology, China, 899-902. https://doi.org/10.1109/ICBNMT.2009.5347814
  • [17] Harish, S. V., & Archana, N. V. (2023). Pragmatic Distribution Based Routing Cluster to Improve Energy Efficient Cluster Lifetime for Wireless Sensor Networks. Metrology and Measurement Systems, 69(2), 353-360. https://doi.org/10.24425/ijet.2023.144371
  • [18] Paś, J. (2023). Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas. Energies, 16(8), 3351. https://doi.org/10.3390/en16083351
  • [19] Julier, S. J., & Uhlmann, J. K. (1997, June). A non-divergent estimation algorithm in the presence of unknown correlations. In Proceedings of the 1997 American Control Conference (Cat. No. 97CH36041) (Vol. 4, pp. 2369-2373). IEEE. https://doi.org/10.1109/ACC.1997.609105
  • [20] Kaniewski, P. (2010). Structures, models and algorithms in integrated positioning and navigation systems. Wyd. WAT.
  • [21] Kaniewski, P., Gil, R., & Konatowski, S. (2017). Estimation of UAV Position with Use of Smoothing Algorithms. Metrology and Measurement Systems, 24(1), 127-142. https://doi.org/10.1515/mms-2017-0013
  • [22] Niehsen, W. (2002). Information fusion based on fast covariance intersection filtering. Proceedings of the Fifth International Conference on Information Fusion, USA, 901-904 vol. 2. https://doi.org/10.1109/ICIF.2002.1020907
  • [23] Franken, D., & Hupper, A. (2005). Improved fast covariance intersection for distributed data fusion. 7th International Conference on Information Fusion, USA. https://doi.org/10.1109/ICIF.2005.1591849
  • [24] Sijs, J., Lazar, M., & Bosch, P. P. J. V. D. (2010, June). State fusion with unknown correlation: Ellipsoidal intersection. In Proceedings of the 2010 American Control Conference (pp. 3992-3997). IEEE. https://doi.org/10.1109/ACC.2010.5531237
  • [25] Sijs, J., & Lazar, M. (2011). Empirical case-studies of state fusion via ellipsoidal intersection. 14th International Conference on Information Fusion, USA, 1-8. https://ieeexplore.ieee.org/document/5977578
  • [26] Noack, B., Sijs, J., Reinhardt, M., & Hanebeck, U. D. (2017). Decentralized data fusion with inverse covariance intersection. Automatica, 79, 35-41. https://doi.org/10.1016/j.automatica.2017.01.019
  • [27] Noack, B., Sijs, J., & Hanebeck, U. D. (2017, July). Inverse covariance intersection: New insights and properties. In 2017 20th International Conference on Information Fusion (Fusion) (pp. 1-8). IEEE. https://doi.org/10.23919/ICIF.2017.8009694
  • [28] PulsON 440 Datasheet/User Guide (2017)
  • [29] Specht, O. (2023). Method for accuracy assessment of topo-bathymetric surface models based on geospatial data recorded by UAV and USV vehicles. Metrology and Measurement Systems, 30(3). 1-19. https://doi.org/10.24425/mms.2023.146421
Uwagi
1. This work was supported by the Military University of Technology, Poland, under research project UGB 22-752.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbe38531-329a-4114-a961-081822499220
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.