PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of high temperature annealing on the microstructure evolution and hardness behavior of the Inconel 625 superalloy additively manufactured by laser powder bed fusion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing of Inconel 625 components attracts great interest due to its ability to produce parts with complex geometries that are needed for high-temperature applications in the aerospace, energy, automotive and chemical industries. To take full advantage of the potential of additive manufacturing, an in-depth understanding of the effects of prolonged high-temperature annealing on microstructure and hardness evolution is needed. Previous research in this field has mainly focused on a limited range of temperature and time. This study aims to determine the effect of prolonged high-temperature annealing on the evolution of intermetallic phases and carbides, as well as changes in the dislocation substructure of Inconel 625 superalloy additively manufactured by laser powder bed fusion subjected to stress relief annealing and subsequent isothermal annealing at a temperature up to 800°C for 5-500 h. The microstructure development is correlated with hardness behaviour. It is determined that the microstructure evolution proceeds in four stages with temperature and time increase. In the initial stress-relieved condition, a cellular microstructure with nano-sized precipitates of the Laves phase and NbC carbides at the cell walls occurs, and hardness is equal to 300 HV10. In the 1st stage of the microstructure evolution, the γ'' phase particles precipitate on the cell walls, which results in hardening up to 383 HV10 in the specimen annealed at 700°C for 5 h. The 2nd stage involves the precipitation of the γ'' phase both on the cell walls and inside the cells, as well as the formation of dislocation networks, which contribute to the softening effect and hardness drop to 319 HV10. In the 3rd stage, at temperature 700 and 800°C, the δ phase, M23C6 carbides, and the Laves phase precipitate and grow, and the sub-grain boundaries are formed. The hardness ...
Rocznik
Strony
art. e249, s. 1--20
Opis fizyczny
Bibliogr. 54 poz., il., tab., wykr.
Twórcy
autor
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
autor
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
  • SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
  • AGH University of Krakow, Academic Centre for Materials and Nanotechnology (ACMiN), Kraków, Poland
autor
  • University of Silesia in Katowice, Faculty of Science and Technology, Institute of Materials Engineering, Chorzow, Poland
  • University of Hradec Králové, Faculty of Science, Hradec Králové, Czech Republic
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
Bibliografia
  • 1. Eiselstein HL, Tillack DJ. The invention and definition of alloy 625, superalloys 718, 625, 706. Var Deriv. 1991. https://doi.org/10.7449/1991/superalloys_1991_1_14.
  • 2. Shankar V, Sankara Rao KB, Mannan SL. Microstructure and mechanical properties of Inconel 625 superalloy. J Nucl Mater. 2001;288:222-32. https://doi.org/10.1016/S0022-3115(00) 00723-6.
  • 3. Gonzalez JA, Mireles J, Staford SW, Perez MA, Terrazas CA, Wicker RB. Characterization of Inconel 625 fabricated using powder-bed-based additive manufacturing technologies. J Mater Process Technol. 2019;264:200-10. https://doi.org/10.1016/j.jmatprotec.2018.08.031.
  • 4. Mahajan A, Singh G, Devgan S. Additive manufacturing of metallic biomaterials: a concise review. Archiv Civ Mech Eng. 2023;187:23. https://doi.org/10.1007/s43452-023-00730-7.
  • 5. Tian Z, Zhang C, Wang D, Liu W, Fang X, Wellmann D, Zhao Y, Tian Y. A review on laser powder bed fusion of Inconel 625 nickel-based alloy. Appl Sci. 2020;10:1-14. https://doi.org/10. 3390/app10010081.
  • 6. Zhang F, Levine LE, Allen AJ, Campbell CE, Lass EA, Cheruvathur S, Stoudt MR, Williams ME, Idell Y. Homogenization kinetics of a nickel-based superalloy produced by powder bed fusion laser sintering. Scr Mater. 2017;131:98-102. https://doi.org/10.1016/j.matdes.2018.06.010.
  • 7. Lass EA, Stoudt MR, Williams ME, Katz MB, Levine LE, Phan TQ, Gnaeupel-Herold TH, Ng DS. Formation of the Ni3Nb d-phase in stress-relieved Inconel 625 produced via laser powderbed fusion additive manufacturing. Metall Mater Trans A Phys Metall Mater Sci. 2017;48:5547-58. https://doi.org/10.1007/ s11661-017-4304-6.
  • 8. Sundararaman M, Kumar L, Eswara Prasad G, Mukhopadhyay P, Banerjee S. Precipitation of an intermetallic phase with Pt2Mo-type structure in alloy 625. Metall Mater Trans A Phys Metall Mater Sci. 1999;30:41-52. https://doi.org/10.1007/ s11661-999-0194-6.
  • 9. Suave LM, Cormier J, Villechaise P, Soula A, Hervier Z, Bertheau D, Laigo J. Microstructural evolutions during thermal aging of alloy 625: Impact of temperature and forming process. Metall Mater Trans A Phys Metall Mater Sci. 2014;45:2963-82. https://doi.org/10.1007/s11661-014-2256-7.
  • 10. Marchese G, Lorusso M, Parizia S, Bassini E, Lee J-W, Calignano F, Manfredi D, Terner M, Hong H-U, Ugues D, Lombardi M, Biamino S. Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion. Mater Sci Eng A. 2018;729:64-75. https://doi.org/10.1016/j.msea.2018.05.044.
  • 11. Zhang F, Levine LE, Allen AJ, Stoudt MR, Lindwall G, Lass EA, Williams ME, Idell Y, Campbell CE. Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion. Acta Mater. 2018;152:200-14. https://doi.org/10.1016/j.actamat. 2018.03.017.
  • 12. Hyer H, Newell R, Matejczyk D, Hsie S, Anthony M, Zhou L, Kammerer C, Sohn Y. Microstructural development in as built and heat treated IN625 component additively manufactured by laser powder bed fusion. J Phase Equilibria Difus. 2021;42:14-27. https://doi.org/10.1007/s11669-020-00855-9.
  • 13. Keller T, Lindwall G, Ghosh S, Ma L, Lane BM, Zhang F, Kattner UR, Lass EA, Heigel JC, Idell Y, Williams ME, Allen AJ, Guyer JE, Levine LE. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater. 2017;139:244-53. https:// doi.org/10.1016/j.actamat.2017.05.003.
  • 14. Staroń S, Dubiel B, Gola K, Kalemba-Rec I, Gajewska M, Pasiowiec H, Wróbel R, Leinenbach C. Quantitative microstructural characterization of precipitates and oxide inclusions in Inconel 625 superalloy additively manufactured by L-PBF method. Metall Mater Trans A. 2022;53:2459-79. https://doi. org/10.1007/s11661-022-06679-1.
  • 15. Chyrkin A, Gunduz KO, Fedorova I, Sattari M, Visible A, Halvarsson A, Froitzenheim J, Stiller K. High-temperature oxidation behavior of additively manufactured IN625: effect of microstructure and grain size. Corros Sci. 2022;205: 110382. https:// doi.org/10.1016/j.corsci.2022.110382.
  • 16. Parizia S, Marchese G, Rashidi M, Lorusso M, Hryha E, Manfredi D, Biamino S. Effect of heat treatment on microstructure and oxidation properties of Inconel 625 processed by LPBF. J Alloys Compd. 2020;846: 156418. https://doi.org/10.1016/j. jallcom.2020.156418.
  • 17. Zhu J, Kokawa H, Feng K, Li Z. Unexpectedly high corrosion susceptibility near fusion boundaries of Inconel 625 manufactured by laser powder bed fusion. Corros Sci. 2023;223: 111432. https://doi.org/10.1016/j.corsci.2023.111432.
  • 18. Gola K, Ledwig P, Dubiel B. Efect of microstructure of additively manufactured Inconel 625 on long-term corrosion behaviour in sulfuric acid media. JOM. 2023;75:1242-50. https://doi. org/10.1007/s11837-023-05708-7.
  • 19. Li C, White R, Fang XY, Weaver M, Guo YB. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment. Mater Sci Eng A. 2017;705:20-31. https://doi.org/10.1016/j.msea.2017.08.058.
  • 20. Marchese G, Bassini E, Parizia S, Manfredi D, Ugues D, Lombardi M, Fino P, Biamino S. Role of the chemical homogenization on the microstructural and mechanical evolution of prolonged heat-treated laser powder bed fused Inconel 625. Mater Sci Eng A. 2020;796: 140007. https://doi.org/10.1016/j.msea. 2020.140007.
  • 21. Marinucci F, Marchese G, Bassini E, Aversa A, Fino P, Ugues D, Biamino S. Hardness evolution of solution-annealed LPBFed Inconel 625 alloy under prolonged thermal exposure. Metals. 2022. https://doi.org/10.3390/met12111916.
  • 22. Song KH, Nakata K. Mechanical properties of friction-stir welded inconel 625 alloy. Mater Trans. 2009;50:2498-501. https://doi.org/10.2320/matertrans.M2009200.
  • 23. Suave LM, Bertheau D, Cormier J, Villechaise P, Soula A, Hervier Z, Hamon F, Laigo J. Impact of thermomechanical aging on alloy 625 high temperature mechanical properties, 8th Int. Symp. Superalloy 718 Deriv 2014;2014:317-331. https://doi. org/10.1002/9781119016854.ch26.
  • 24. Stoudt MR, Lass EA, Ng DS, Williams ME, Zhang F, Campbell CE, Lindwall G, Levine LE. The infuence of annealing temperature and time on the formation of δ-phase in additively-manufactured Inconel 625. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:3028-37. https://doi.org/10.1007/ s11661-018-4643-y.
  • 25. Gola K, Dubiel B, Kalemba-Rec I. Microstructural changes in Inconel 625 alloy fabricated by laser-based powder bed fusion process and subjected to high-temperature annealing. J Mater Eng Perform. 2020;29:1528-34. https://doi.org/10.1007/ s11665-020-04605-3.
  • 26. Staroń S, Macioł P, Dubiel B, Gola K, Falkus J. Evolution of δ phase precipitates in Inconel 625 superalloy additively manufactured by laser powder bed fusion and its modeling with fuzzy logic. Arch Civ Mech Eng. 2023. https://doi.org/10.1007/ s43452-023-00626-6.
  • 27. Xu J, Gruber H, Boyd R, Jiang S, Peng RL, Moverare JJ. On the strengthening and embrittlement mechanisms of an additively manufactured Nickel-base superalloy. Materialia. 2020;10: 100657. https://doi.org/10.1016/j.mtla.2020.100657.
  • 28. Smith TR, Sugar JD, San Marchi C, Schoenung JM. Strengthening mechanisms in directed energy deposited austenitic stainless steel. Acta Mater. 2019;164:728-40. https://doi.org/10.1016/j. actamat.2018.11.021.
  • 29. Small KA, Clayburn Z, DeMott R, Primig S, Fullwood D, Taheri ML. Interplay of dislocation substructure and elastic strain evolution in additively manufactured Inconel 625. Mater Sci Eng A. 2020;785: 139380. https://doi.org/10.1016/j.msea. 2020.139380.
  • 30. Qiu C, Al Kindi M, Aladawi AS, Al Hatmi I. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci Rep. 2018;8:1–16. https://doi. org/10.1038/s41598-018-26136-7.
  • 31. Liu L, Ding Q, Zhong Y, Zou J, Wu J, Chiu YL, Li J, Zhang Z, Yu Q, Shen Z. Dislocation network in additive manufactured steel breaks strength-ductility trade-off. Mater Today. 2018;21:354-61. https://doi.org/10.1016/j.mattod.2017.11.004.
  • 32. Li Z, He B, Guo Q. Strengthening and hardening mechanisms of additively manufactured stainless steels: the role of cell sizes. Scr Mater. 2020;177:17–21. https://doi.org/10.1016/j.scrip tamat.2019.10.005. 33. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671-5. https:// doi.org/10.1038/nmeth.2089.
  • 34. Pai HC, Sundararaman M. A comparison of the precipitation kinetics of γ″ particles in virgin and re-solutioned alloy 625. Proc Int Symp Superalloys Var Deriv. 2005;3:487-95. https://doi.org/10.7449/2005/superalloys_2005_487_495.
  • 35. Dupont JN, Lippold JC, Kiser SD. Welding metallurgy and weldability of nickel-base alloys. New Jersey: John Wiley & Sons Inc., Publication; 2009.
  • 36. Anderson MJ, Benson J, Brooks JW, Saunders B, Basoalto HC. Predicting precipitation kinetics during the annealing of additive manufactured Inconel 625 components. Integr Mater Manuf Innov. 2019;8:154-66. https://doi.org/10.1007/ s40192-019-00134-7.
  • 37. Sundararaman M, Mukhopadhyay P, Banerjee S. Precipitation of the δ-Ni3Nb phase in two nickel base superalloys. Metall Trans A. 1988;19:453-65. https://doi.org/10.1007/BF02649259.
  • 38. Shaikh MA, Ahmad M, Shoaib KA, Akhter JI, Iqbal M, Precipitation hardening in Inconel* 625. Mater Sci Technol. 2000. https://doi.org/10.1179/ 026708300101507613.
  • 39. Xu WS, Yang XP, Zhang WZ. Interpretation of the habit plane of δ precipitates in superalloy Inconel 718. Acta Metall Sin (English Lett). 2018;31:113-26. https://doi.org/10.1007/ s40195-017-0693-1.
  • 40. Lindwall G, Campbell CE, Lass EA, Zhang F, Stoudt MR, Allen AJ, Levine LE. Simulation of TTT curves for additively manufactured Inconel 625. Metall Mater Trans A Phys Metall Mater Sci. 2019;50:457-67. https://doi.org/10.1007/ s11661-018-4959-7.
  • 41. Verdi D, Garrido MA, Múnez CJ, Poza P. Microscale evaluation of laser cladded Inconel 625 exposed at high temperature in air. Mater Des. 2017;114:326-38. https://doi.org/10.1016/j.matdes. 2016.11.014.
  • 42. Bansal A, Zafar S. Influence of heat treatment on microstructure and mechanical properties of inconel-625 clad deposited on mild steel. Indian J Eng Mater Sci. 2017;24:477-83.
  • 43. Stein F, Leineweber A. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. J Mater Sci. 2021;56:5321-427. https://doi.org/10.1007/s10853-020-05509-2.
  • 44. Dai T, Wheeling RA, Hartman-Vaeth K, Lippold JC. Precipitation behavior and hardness response of Alloy 625 weld overlay under different aging conditions. Weld World. 2019;63:1087-100. https://doi.org/10.1007/s40194-019-00724-1.
  • 45. Son KT, Phan TQ, Levine LE, Kim KS, Lee KA, Ahlfors M, Kassner ME. The creep and fracture properties of additively manufactured Inconel 625. Materialia. 2021;15: 101021. https://doi.org/10.1016/j.mtla.2021.101021.
  • 46. Liu X, Fan J, Zhang P, Xie J, Chen F, Liu D, Yuan R, Tang B, Kou H, Li J. Temperature dependence of deformation behavior, microstructure evolution and fracture mechanism of Inconel 625 superalloy. J Alloys Compd. 2021. https://doi.org/10.1016/j.jallc om.2021.159342.
  • 47. Wu G, Ding K, Qiao S, Wei T, Liu X, Gao Y. Weakening modes for the heat affected zone in Inconel 625 superalloy welded joints under different high temperature rupture conditions. J Mater Res Technol. 2021;14:2233-42. https://doi.org/10.1016/j. jmrt.2021.07.156.
  • 48. Floreen S, Fuchs GE, Yang WJ. The metallurgy of alloy 625, superalloys 718, 625, 706. Var Deriv. 1994. https://doi.org/10.7449/1994/superalloys_1994_13_37.
  • 49. Miekk-Oja HM, Lindroos VK. The formation of dislocation networks. Surf Sci. 1972;31:422-55. https://doi.org/10.1016/0039-6028(72)90270-1.
  • 50. Parsa AB, Ramsperger M, Kostka A, Somsen C, Körner C, Eggeler G. Transmission electron microscopy of a CMSX-4 Ni-base superalloy produced by selective electron beam melting. Metals. 2016;6:1-17. https://doi.org/10.3390/met6110258.
  • 51. Specialmetals.com, Special Metals: INCONEL alloy 625, (2006). https://www.specialmetals.com/documents/technicalbulletins/inconel/inconel-alloy-625.pdf. Accessed 15 May 2023.
  • 52. Guo Z, Sha W. Quantification of precipitation hardening and evolution of precipitates. Mater Trans. 2002;43:1273-82. https://doi.org/10.2320/matertrans.43.1273.
  • 53. Deng P, Yin H, Song M, Li D, Zheng Y, Prorok BC, Lou X. On the thermal stability of dislocation cellular structures in additively manufactured austenitic stainless steels: roles of heavy element segregation and stacking fault energy. Addit Manuf Energy Appl. 2020;72:4232-43. https://doi.org/10.1007/ s11837-020-04427-7.
  • 54. McElroy RJ, Szkopiak ZC. Dislocation-substructure-strengthening and mechanical-thermal treatment of metals. Int Metall Rev. 1972;17:175-202. https://doi.org/10.1179/imtlr.1972.17.1.175.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbe08951-f81f-4afd-bc94-ecee52d184a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.