PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Simulation research of motion of lightweight wheeled mobile robot on various types of soft ground : a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A problem of influence of three types of soft ground on longitudinal motion of a lightweight four-wheeled mobile robot is considered. Kinematic structure, main design features of the robot and its dynamics model are described. A numerical model was elaborated to simulate the dynamics of the robot’s multi-body system and the wheel‐ground interaction, taking into account the soil deformation and stresses occurring on the circumference of the wheel in the area of contact with the deformable ground. Numerical analysis involving four velocities of robot motion and three cases of soil (dry sand, sandy loam, clayey soil) is performed. Within simulation research, the motion parameters of the robot, ground reaction forces and moments of force, driving torques, wheel sinkage and slip parameters of wheels were calculated. Aggregated research results as well as detailed results of selected simulations are shown and discussed. As a result of the research, it was noticed that wheel slip ratios, wheels’ sinkage and wheel driving torques increase with desired velocity of motion. Moreover, it was observed that wheels’ sinkage and driving torques are significantly larger for dry sand than for the other investigated ground types.
Twórcy
  • Warsaw University of Technology, Faculty of Mechatronics, Institute of Micromechanics and Photonics, Boboli 8, 02-525 Warsaw, Poland
  • ŁUKASIEWICZ Research Network-Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, 02-486 Warsaw, Poland
Bibliografia
  • [1] K. Zhou, S. Lei, and X. Du. “Modelling and dynamic analysis of slippage level for large-scale skid-steered unmanned ground vehicle,” Sci Rep, vol. 12, no. 1, Art. no. 1, Sep. 2022, doi: 10.1038/s41598-022-20262-z.
  • [2] J. Guo, H. Gao, L. Ding, T. Guo, and Z. Deng. “Linear normal stress under a wheel in skid for wheeled mobile robots running on sandy terrain,” Journal of Terramechanics, vol. 70, pp. 49–57, Apr. 2017, doi: 10.1016/j.jterra.2017.01.004.
  • [3] M. Ciszewski, M. Giergiel, T. Buratowski, and P. Małka, Modeling and Control of a Tracked Mobile Robot for Pipeline Inspection. Springer Nature, 2020.
  • [4] L. Liang et al. “Model-Based Coordinated Trajectory Tracking Control of Skid-Steer Mobile Robot with Timing-Belt Servo System,” Electronics, vol. 12, no. 3, Art. no. 3, Jan. 2023, doi: 10.3390/electronics12030699.
  • [5] A. J. Moshayedi, A. S. Roy, S. K. Sambo, Y. Zhong, and L. Liao. “Review On: The Service Robot Mathematical Model,” EAI Endorsed Transactions on AI and Robotics, vol. 1, pp. e8–e8, Feb. 2022, doi: 10.4108/airo.v1i.20.
  • [6] K. Peng, X. Ruan, and G. Zuo. “Dynamic model and balancing control for two-wheeled self-balancing mobile robot on the slopes,” in Proceedings of the 10th World Congress on Intelligent Control and Automation, Jul. 2012, pp. 36813685. doi: 10.1109/WCICA.2012.6359086.
  • [7] P. Lichota. “Wavelet Transform-Based Aircraft System Identification,” Journal of Guidance, Control, and Dynamics, vol. 46, no. 2, pp. 350–361, Feb. 2023, doi: 10.2514/1.G006654.
  • [8] S. Sutulo and C. Guedes Soares. “An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests,” Ocean Engineering, vol. 79, pp. 10–25, Mar. 2014, doi:10.1016/j.oceaneng.2014.01.007.
  • [9] J. Giergiel, K. Kurc, and D. Szybicki. “Identification of the Mathematical Model of an Underwa-ter Robot Using Artificial Inteligence,” Mechanics and Mechanical Engineering, 2014, Accessed:Jan. 16, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Identification-of-the-Mathematical-Model-of-an-Giergiel-Kurc/5b4cfa76e8916013fa613c40ff06d3a966542853.
  • [10] A. Perrusquía and W. Yu. “Identification and optimal control of nonlinear systems using recurrent neural networks and reinforcement learning: An overview,” Neurocomputing, vol. 438, pp. 145–154, May 2021, doi: 10.1016/j.neucom.2021.01.096.
  • [11] M. G. Bekker, Off-the-road Locomotion: Research and Development in Terramechanics. University of Michigan Press, 1960.
  • [12] J. Y. Wong, Theory of Ground Vehicles, 3rd Edition,3rd edition. New York: Wiley-Interscience, 2001.
  • [13] Sh. Taheri, C. Sandu, S. Taheri, E. Pinto, and D.Gorsich. “A technical survey on Terramechanics models for tire-terrain interaction used in modeling and simulation of wheeled vehicles,”Journal of Terramechanics, vol. 57, pp. 1–22, Feb.2015, doi: 10.1016/j.jterra.2014.08.003.
  • [14] K. Iagnemma and S. Dubowsky, Mobile Robots in Rough Terrain: Estimation, Motion Planning,and Control with Application to Planetary Rovers.Springer, 2004.
  • [15] L. Ding, H. Gao, Z. Deng, K. Yoshida, and K. Nagatani. “Slip ratio for lugged wheel of planetary rover in deformable soil: definitione and estimation,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct.2009, pp. 3343–3348. doi: 10.1109/IROS.2009.5354565.
  • [16] Z. Wang et al. “Wheels’ performance of Mars exploration rovers: Experimental study from the perspective of terramechanics and structural mechanics,” Journal of Terramechanics, vol. 92, pp. 23–42, Dec. 2020, doi: 10.1016/j.jterra.2020.09.003.
  • [17] M. Trojnacki and P. Da̧bek. “Studies of dynamics of a lightweight wheeled mobile robot during longitudinal motion on soft ground,” Mechanics Research Communications, vol. 82, pp. 36–42, Jun.2017, doi: 10.1016/j.mechrescom.2016.11.001.
  • [18] G. N. B. Hathorn, K. Blackburn, and J. L. Brighton.“An Investigation into Wheel Sinkage on Soft Sand,” Tire Science and Technology, vol. 42, no. 2,pp. 85–100, Apr. 2014, doi: 10.2346/tire.14.420201.
  • [19] “Tire friction and rolling coefϐicients,” HP Wizard. Accessed: Jul. 25, 2023. [Online]. Available:https://hpwizard.com/tire-friction-coefficient.html.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbdbbc81-e8ed-4540-b3d1-24ecf9ca3f29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.