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Abstract

There are presented general safety analytical rmaafetomplex multistate technical systems relatetheir
operation processes. They are the integrated demerdels of complex technical systems, linking thei
multistate safety models and their operation pses models and considering variable at the diftere
operation states safety structures and their commersafety parameters. The conditional safetytiome at
the system particular operation states and independf the system particular operation states the
unconditional safety function and the risk functiminthe complex technical systems are defined. & ljeint
models of the safety and the variable in time sysbperation processes are constructed for mutistaties,
parallel, ‘m out ofn”, consecutive t out ofn: F”, series-parallel, parallel-series, seriesdut ofk”, “m out of
l;"-series, series-consecutiven‘out ofk: F” and consecutiverty out ofl;: F’-series systems. The joint models
are applied to determining safety characteristitshese systems related to their varying in timéetya
structures and their components safety charadgosridinder the assumption that the considered sgstae
exponential, the unconditional safety functionshaefse systems are determined.

The proposed models and methods are applied wafleéy analysis, evaluation and prediction of the o
subsystem of the port grain transportation systated to varying in time their operation process#sictures
and components safety parameters.

1. Introduction this chapter is to present recently developed, the

Most | technical " ructurall general safety analytical models of complex non-
ost real technical systems are structuraily thryrepairable and repairable multistate technicalesyst
complex and they often have complicated operatio

! n ! t r]éelated to their operation processes [6], [7],d8% to
processes. Large numbers of components an pply them practically to real industrial systemsl a
subsystems and their operating complexity caude tha, , oqses 8], [12], [11], [13]. In the case ofglar

;[jhfef el\,:alflj_ﬂt'o? an?j pre<ilj|ct|5[)n tOf trt].e'r sgf(ity IS systems, the determination of the exact safety
Ihcult. 1he ime dependent Interactions DEWeeN,,ions of the systems and the system risk

ﬂ;]e systems do;:r(]aratmntproc,:es?es toperatlorcll S,[Lat%nctions leads us to very complicated formulae tha
changing an € systems structures an ®5re often useless for safety practitioners. Onthef
components safety states changing processes a

ident feat f i | technical " Thﬁ%portant techniques in this situation is the
evident teatures of most real technical Systems. asymptotic approach [5], [8] to system safety and
common safety and operation analysis of thes

lex technical i i of t value in th afety evaluation. This aspect of complex technical
compiex technical systems IS of great value in esystems is also shortly discussed in this paper.
industrial practice. The convenient tools for

analyzing this problem are the multistate system'’s
safety modeling [8], [15-17] commonly used with the
semi-Markov modeling [1-3], [4], [5], [9], [10] dhe =~ We assume that the system during its operation
systems operation processes, leading to therocess is taking,v N, different operation states

construction the joint general safety models of the, , . 7 Further, we define the system operation

complex technical systems related to their opematio . . .
orocess [6], [8], [7], [11], [13]. The main objeai of process Z(t), t<0,+), with discrete operation

2. System operation at variable conditions
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states from the sef{z,z,...,z, }Moreover, we whereM, ,b=12...v, are given by (2), while the

assume that the system operation procgsis a  steady probabilitiesz, of the vector[r7],, satisfy
semi-Markov process [4], [7], [8], [11{14] withe  the system of equations

conditional sojourn timeg,, at the operation states

z, when its next operation stateas b,l =12,...,v, []=[m]lp,]

b #I. Under these assumptions, the system operation iﬂ -1 (4)
process may be described by: =

- the vector[p,(0)],, of the initial probabilities
p,(0)=P(Z©0)=2z), b=12..v, of the system 3. Safety of multistate systems at variable

operation proces&(t) staying at particular operation OP€ration conditions

states at the moment-0; We assume that the changes of the operation stites

- the matrix [p,], of probabilittes p, , the system operation proces&) have an influence

b, =12,....v, b#l, of the system operation process on the system multistate componentE,

Z(t) transitions between the operation staresand i =12,...,n, safety and the system safety structure as

z; well. Consequently, we denote the system multistate
componentE, i=12,...,n, conditional lifetime in

- the matrix [H,(t)],, of conditional distribution
functions H, (t)=P(g, <t ), t=0, b,1=12,...,v,
b#l, of the system operation proces&(t)
conditional sojourn timeg), at the operation states.
As the mean valueE[g, df the conditional sojourn

times g, are given by [S(t, 0@ =1, [S (t,1)] ® [S &, 21”1, @

the safety state subsdiu,u+1...,7Z2 while the
system is at the operation statg, b=12,...,v, by
T®(u) and its conditional safety function by the
vector

M, =E6,] :Tthbl (t), bl=12,..v, bzl, (1) with the coordinates defined by

®) — - (b) —
then from the formula for total probability, it folvs [S & )] P(T (u)>t|Z(t) ) (5)

that the unconditional distribution functions ofeth
sojourn times 6, b=12,...,v, of the system for t<Q,«), u=12,..,z b=12..,v.

operation proces<(t) at the operation stateg , The safety function[S (t,u)]® is the conditional
b=12,...,v, are given by [8], [11]-[14] probability that the componerk, lifetime T,* (u)

in the safety state subdet,u+1,...,z iggreater than

H, () = Z p,H, (), t=0 b=12,...v. t, while the system operation proc%)is at the

operation statg, .

Similarly, we denote the system conditional
lifetime in the safety state subdet u+1,...,2Z while

the system is at the operation stajg b=12,...,v,
by T® (u) and the conditional safety function of the
system by the vector

Hence, the mean value€[6, &f the system
operation procesZ (t) unconditional sojourn times
6, b=12,...v, at the operation states are given by

M, =E[6,] = X p,M, , b=12...v, 2)
' [SEHI® = [1,[SED]?, ... [SE 211,  (6)
where M,, are defined by the formula (1).

The limit values of the system operation processwith the coordinates defined by
Z(t) transient probabilities at the particular

operation statesp, t (3 P(Z(t) = z,) , t0< 0,+0), [S(t,w]® =PI () >t|2(t) = z,) (7

b=12,...,v, are given by [8], [11]-[14
g y I8, [11}-14] for t0<0,0), u=12,...,2z, b=12,...,v.

M The safety function[S(t,u)]® is the conditional
toe > 7T M, probability that the system lifetim& * (u) in the

1=1
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safety state subsdtu,u+1l,...,z is greater thart, The mean value of the system unconditional lifetime
while the system operation proceZg) is at the T(u) in the safety state subsgu,u+l...z ib

operation statez, . given by [7], [8], [11]-[14]

Thus, the system conditional lifetimes in the gafe

states subsefu,u+1,...,7 at the operational state s (u) Di p 4, (U), u=12,...,2, (10)
b=1

z

b
wherey, (u) are the mean values of the system
conditional lifetimes T® (u) in the safety state
defined for u=12,...z. b=12...v., nON, are subset {u,u+1...,z } at the operation statez,,
dependent on the components conditional lifetimesP = 12.....v, given by

TOW), TP W), ..., TP (), in the safety states i

subset{u,u+1,...,7 at the operation state, and 4, () = [[SEt,w]®dt, u=12,...,2, (11)
the coordinates of the system conditional safety °
function at the operation statg

TOW) =TT W, 1,7 W),...T," W)

[St,u]®, u=12,...,z, b=12,...v, are defined by
(6)-(7) and p, are given by (3). Whereas, the
variance of the system unconditional lifetirigu )
is given by

[Stt,w)]®

=SS, €wl”.[S, ¢u]®....[S, €. wl®)

defined for t0<00 )u=12...2 b=12...0, JZ(U):ZII S(t,u)dt —[u(u)?, u=12,...,z, (12)

nON, are dependent on the coordinaf8s(t,u)]”,
(b) (b)
[S, ¢, w1®, ..., [S,tu)]®,of the components L), U= OL...z are given by (10)-(11).

conditional safety functions at the operation stgte Hence, according to (1.19) [8], we get the follogyin
Further, we denote the system unconditionakormylae for the mean values of the unconditional

where S(t,u), u=12,...,z, are given by (8)-(9) and

lifetime in the safety state subs@i,u+1..,2 by |ifetimes of the system in particular safety states
T(u) and the unconditional safety function of the
system by the vector Hd(u) = p(u)-pu(u+D, u=01..,z-1
St =1[1,S¢t),..., S,2z)], (8) (2) = u(2), (13)
with the coordinates defined by where u(u), u=041...,z, are given by (10)-(11).
Moreover, according (1.20)-(1.21) [8], ifis the
S(t,u) = P(T(u) >1) system critical safety state, then the system risk

function is given by
for t0<0,0), u=12,..,2

In the case when the system operation tigheis r(t) =1- S(,r), t0<0,), (14)
large enough, the coordinates of the unconditional

safety function of the system defined §) are  where S(t,r) is the coordinate of the system
given by unconditional safety function given by (9) far=r

, and if ris the moment when the system risk function
S(t,u) OY p,[S(t,u)]® fort=0, u=12,...,z(9) exceeds a permitted levglthen
b=1

r=r7"(9), (15)
where [S(t,w)]®, u=12,...,z, b=12,...v,are the
coordinates of the system conditional safetyherer (1), if it exists, is the inverse function of
functions defined by (6)'(7) arpll,b = 1,2,...,[/, are the risk function.(t) given by (14)
the system operation process limit transientpyther, we assume that the system componEnts
probabilities given by (3). i=12..,n, at the system operation states
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z,,b=12..v, have the exponential
functions, i.e. their coordinates are given by

safety

[S Gul® =PT® (u)>t|2(t) = z,)
=expHA (W11

for t0<0,00), u=12,...,z, b=12,...,v, and we have
[SEtWI® =PT® W) >1z(t) = 2,)
=[S(S, w1, [S, € wl?,...IS, € u)]®)N®
=[S(exp[-{A, (U)]”t], exp[-{A, ()] 1]

exp[{A, W] “t)]®

for t0<0,0), u=12,...,z,b=12,..,v, nON.

= 3. p,[R(expELA, (W], expl{A, (W] 1

----- exp[H A, ()]t

fort=0,u=12,...,z

The application of the above formula and the rasult
given in Chapter 1 [8] yield the following results
formulated in the form of the following proposition
Proposition 1

If components of the multi-state system at the
operation statez, h=12,...,v, have the exponential

safety functions given by

The reason for this strong assumption on the system
components is that the exponential distribution has [S (t,u)]® =exp[-[4, (u)]t] fort=0,

“no memory” expressed in the following property

[S (&, +t,u)]®

= P(T™ (u) >t, +t/ T, (u) >t,|Z(t) = Z,)
=PT™ () >t, +t n T, (u) >t,[Z(t) = z,)
IP(T® (u) >t,|Z(t) = ,)

=P(TY (U) >t, +t|Z(t) = 2,) /P(T” (u) >t,|Z(t) = 2,)
= expHA, (U)]® (t+t,) / expHA, ()]t ]

= exp[HA, (W] ”t]

=P(T" (u)>tz(t) =2,) =[S W]

for t,0<0,0) andt<0Q,00 ),u=12,...,z

[SEN® =[S EDI?,....[S . 2]7], (16)
t [ (—o0,0), b=12,...,v,
where
[S(t,u)]® =1fort<O,
[A W]® >0, (17)

i=12,..nu=12,..7z b=12..v,
in the case of series, parallet 'dut ofn”,
consecutive th out ofn: F” systems and respectively
by

[S, N =[L[S D1V, [S, €217,  (18)
t0 (-o,0), b=12,...,v,

where

[S; (t,u)]® =1 fort<0,
[S; t,w)]® =expHA, (W)]®t] fort=0,

[4; (W]® >0, 19]

Both of them, the assumption about the exponential

safety functions of the system components and the j — 1 Lkij=12,.4u=12.2b=12,..

above property, justify the following form of the
formula (9)

S(t,u) O p,[S(t,u)]”
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>

large enough, then its multistate unconditionat¢tsaf = v L _ . () +771
function is given by the vector: Sy (tu) Dbqub rl,rg.rn=0 i|:|1[1 expiA (W]l

i i +ro+.. +r<m
i) for a series system ¢ A s

S (L) =[1,S, ¢ ,...S, 2], (20) exp-@-1)[4 (W)]1] (27)

where .
fort=0, m=n-mu=12,..,z

S, (t,u)=1for t <0,
iv) for a consecutiverf out ofn: F” system

S,(tw C X p, expES[A, (W] (21)
i " CS™"(t,)) = [1,CS" () ,....CS"(t, 2) ], (28)
fort=0, u=12,...,z
where

ii) for a parallel system
CS!(t,u)=1fort <0,

Si(t) = [1.5(t1),... Si(t.2)], (22)

where forn<m,

1

-y n AM- _ () -
S(tu) C1-3p,fJL-expHA IO (23) L7 g Pl exeiA (W forn=m
CS7(t0) O] 3. p, expELA, ] ICST, (&, 1]

fort=0, u=12,...,z et
+ Y expHA,, (W] [CSy, (t,u)]®
i=1

iii) for a “mout ofn” system

[1[1-expHA, @] forn>m

S™(tl) =[1,S"(t,1),...8™ (t,2)], (24) o130 uzi2. 2 (29)

where )
v) for a series-parallel system

S)(t,u)=1 for t<0,
Sk;ll,lz,...lk (tlm

ST (t,u)
=[1’Sk;I1,I2,...Jk D 1"'1Sk;I1,I2,...Jk (t, Z)]1 (30)

\

_ 1 n - (b)
Hl-2p 3 [exelniA Wit where

r+rp+.+rpsm-1

[1-exp[H A (W]t (25)  Sene.GU=Lfort<o
fort=0, u=1,2,..z Sk;|1,|2,...Jk (t,u)
g C1- 3 p it~ expl XA, ()1 (31)

s'ey=[1Ss"¢tY,..S (2] (26) for t>0.u=12...2

where vi) for a parallel-series system

Snm (t,U) :1 fOI’ t < O, §k;|1,|2,...lk (t’m
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= [17§k;|1,|2,...Jk (t ’1) """ Sk;|1,|2,...Jk (t’ Z)]
where

S (t,u)=1fort<o,

kilpl2,.. 0k

Sk;|1,|2,...]k (t’u)

(32 g exd-14, IO U (37)

fort=0, m=k-m, u=12,...,z

viii) for a “ m out of |, "-series system

ST )

Kill2,..Jk
v k li
C 2Py [ 1] (1= expl-LA, (W] ] (33)
=[L,So D, Sh e 2], (38)
fort=0,u=12,...,z
where
vii) for a series-t out ofk” system ma u) =1 for t <0,
S t, -
<o I
= [:I”Sl??lj_,lz,...“< (t ’1) """ Slz?ll,lz,...]k (t’ Z) ]' (34) |
v k 1 i
OXpR- X nexd-r,[4, W]®t]
where R AT
s t,u)=1 for t<Q, .
e, (1) Ti-expEA, (W11 (39
Skn?|1,|2,...1k (t,u) fort=0,u=12,...,z,
v 1 ki )
01->p, > qlRexpHA W1t]"
b=1 M2, k=0 =l j=1 or
rp+rp+. Argsm-1
i §ﬁ1n72 ..... Mg (t,m
- fex (A, @I @)
a
for t=0,u=12,...2, = [LSae " O Say kD], (40)
where
or -
_ Sy (t,u) =1 for t <0,
Skr:]ll,lz,...lk (‘tlu|
om om G,
=[1,S0,,.. €D ,...S3 ., t.2)], (36) Stz e GU)
where v.oooK L l (®) 77"}
OXpl X [R-expHA (W™t
—_ b=1 i=1 L2 flj =0 j=1
S (t,u)=1fort <O, L2 b ST

kilpl2,.. 0k

§Elv|2v---Jk (t1u)

O0%p, ¥ M-[7]expHA W1V )"

1.r2,.../k=0 1=1
r,rp,..4rgs<m

[exp@-r,)[A; (W]“t]] (41)
fort=0, m =I, -m,i=12,..k, u=12...,z

ix) for a series-consecutivar‘out ofk: F” system
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CS.

kil1.l2,...k

(t.00

m
kil1l2,...0k

m
Kil1.12,.. 0k

= [1,CS t1,....CS

(t.2)], (42)

where

CS;

kilg12,...0k

(t,u)=1fort<0,

m
Kil,12,...0k

CS;

kilg12,..0k

(tu) OX p,[ CSyy, , WY (43)

fort=0, u=12,...,z,

m
kilgl2,...0k

and[CS t,w]®, b=12,...v, are given by

m
kilg.12,...0k

[CS (t,u)]®

1 for k<m,

1-][L-expl-3 A, Wil for k=m,

m
k=Llq.12,... 0k

expl-3[4, (W] 1][CS (t,u)]®

m
k=j-Ll1.02,... ]k

+ Slexpl- £ 14, (1“1 CS tu)®

) ﬁ [1- eXP[‘li_[/liv (u)]®1]] for k >m,

(44)
fort=0,u=12,...,z

x) for a consecutiverty out ofl;; F”-series system

CSay i @

= LCSER ™ 1) CSGI™ LD, (45)
where

ﬁk"fhl"flk"‘ “(t,u) =1 for t <0,

__ o

CSaii Gu) DX pMICST GwI™  (46)

fort=0, u=12,...,z,

and [CST} (t,u)]”, i=1,2,... k,b=12,.v, are
given by

133

[CST (tu]®

forl, <m,
12— exp[A, W]®1t]] forl, =m,
exp[-[A,, (W]VtI[CS, ¢t,u)]®

1
1-
(47)

+ 'T.‘Z;lexp[—[/]”i . (U)] (b) t][ CSiTi-j-l (t, U)] (b)

0 ][~ explLA, @17 forl, >m,

v=lj—j+1

fort=0,u=12,...,z

Remark 1

The formulae for the safety functions stated in
Proposition lare valid for the considered systems
under the assumption that they do not change their
structures at diferrent operation stateg,,
b=12,...,v.This limitation can be simply omitted by
the replacement in these formulae the system’s
structure shape constant parameteysn, k, m, |,

espectively by their changing at diferrent operatio
states z,, b=12,...,v, equivalent structure shape

parametersa®, m®, k® m® |® b=12 ..
For the exponential complex technical systems,

considered irProposition 1 we determine the mean
values u(u ) and the standard deviatioogu o the

unconditional lifetimes of the system in the safety
state subset$u,u+1...,z }u=12,...,z, the mean
values zi(u) of the unconditional lifetimes of the
system in the particular safety statgsu =12,...,z,

the system risk function(t) and the moment when
the system risk function exceeds a permitted |e&vel
respectively defined by (10)-(15), after substitgti
for S(t,u), u=12...,z, the coordinates of the
unconditional safety functions given respectively b
(20)-(47).

4. Asymptotic approach to safety of large
multistate systems at variable operation
conditions

In the case of large systems, the determinaticheof
exact safety functions of the complex systems and
the system risk functions, sometimes, leads us to
very complicated formulae that are often useless fo
safety practitioners. One of the important techagu
that can be useful in this situation is the asymipto
approach [5], [8] to system safety evaluation.His t
approach, instead of the preliminary complex
formula for the system safety function, after
assuming that the number of system components
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tends to infinity and finding the limit safety dfie  for all t from the sets of continuity points ®
system, we can obtain its simplified form. Moreqver _ Ll

in the case of large systems, the possibility ofof the functiondS(t,u)]”, u=12...z, b=12...v.
combining the results of the safety joint models ofHence, for sufficiently largen, the following
complex technical systems and the results conagrninapproximate formulae are valid

the limit safety functions of the considered systas

possible. This way, the results concerned with S.(t, I=[1 S, tJ)....,S, (t,2)], tO(-o,0), (52)
asymptotic approach to estimation of non-repairable

multi-state systems at variable operation condition \hare

may be obtained. Main results concerning asymptotic

approach to multi-state large system safety with .
ageing components in the constant operation S (t,u) 03 p,[S(
conditions are comprehensively presented in the b=t

work [5], [8] and some of these results’ extentioms

the systems operating at the variable conditioms ca t[(—o,»),u=12,...,z

be found in [8].

In order to combine the results on the safety otimu  The following propositions concerned with the large
state systems related to their operation process@s series-parallel and parallel-series  exponential
the results concerning the limit safety functiorfs o systems operating at the variable operation states
the multistate systems, and to obtain the resuits 0exemplary results that can be worked out on thisbas

the asymptotic approach to the evaluation of theof the results included in [5], [8] for the consiee
large multi-state systems safety at the variablein the paper large systems.

operation conditions, we assume the following Proposition 2

t- br(wb) (u) b
W )], (53)

definition [8]. If components of the multistate series-paralleLitag
Definition 1 system at the operation states b= 12,...,v, i.e.,
A safety function the system with the structure shape parameters such
that
Sth=[1sS(t),..S(,2)], tO(-0w,), 48
GLO=L S, S tHe) (48) yo | o) = =1 =10, b=12..v, nON,

have the exponential safety functions given by {18)
where .
(19) are homogeneous, i.e.,

S(I,U)=£pb[5(t,U)](b). u=12...z (49) [A, WIP =AW, i=12,...k?,
is called a limit safety function of a complex j=12..1®, b=12,..,v,
multistate system with the safety function sequence

then the system unconditional multistate safety
S, P=[LS,tD,..S,(t2)] td(-,»), (50) function is given by the approximate formulae,

nON, respectively in the following cases of the system
structure shape at the particular operation states:
where i) k® =n, 1 >0,
S, (t,u) O3 p,[S, G, W]?, u=12,....z, (51) St) =[1,8¢Y,....St 2]
b=1
, : . where
if there exist normalizing constants
a® (u)> 0, b (u) (-0, ), S(t,u) L1~ p, expEnexpHAW] 17t (54)
u=12,...,z, b=12...\v, fort 0 (-c0,0), U=12,...,Z,
such that

KO L k® O o
lim['S, (a® (u)t + b (u),w)]® =[S, u)]® ’ "

S(t,) =[1,S¢) ,...S 2)]
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where fort 0 (-0,00), u=12,...,2
S(t,u) It is possible to obtain similar and more general
(55) results for other considered in the paper muléstat
1 for t<0 systems after some modification of the results
ort=% included in [5], [8].

)

0 v
1-3 p,[1-exp[HAW)]1P1]< for t=0
b=1

5. Application

As an example we will analyse the safety of one of
the subsystems of the port grain elevator in its
operation process. The considered system is
composed of four multi-state non-homogeneous
If components of the multistate parallel-seriesifag sen_es-parallel transportation subs_ystems _andthes
system at the operation states b=12,...v, i.e basic structure in the Baltic Grain Terminal o_f the
y _ P Ty e Port of Gdynia assigned to handle and clearing of
the system with the structure shape parameters suknorted and imported grain. One of the basic

u=12,...,2.

Proposition 3

that elevator functions is loading railway trucks with
k=k”, I, =1,=...=1, =1, b=12,..,v, nON, grain. The railway truck loading is performed ireth
have the exponential safety functions given by +{18) following successive grain transportation system
(19) are homogeneous, i.e., steps:
e gravitational passing of grain from the storage
[A, WP =[AW]®, i=12,..k®, placed on the 8th elevator floor through 45 hall to
horizontal conveyors placed in the elevator
basement,

i = ® =
1712017, b=12..v, « transport of grain through horizontal conveyors to
» _ vertical bucket elevators transporting grain to the
then the system unconditional multi-state safety maijn distribution station placed on the 9th floor,

function is given by the approximate formulae,, grayitational dumping of grain through the main

respectively in the following cases of the system gigripution station to the balance placed on the

structure shapes at the particular operation states 6th floor,
_ e dumping weighed grain through the complex of
i) kP =n 1P 10,10 >0, flaps placed on the 4th floor to horizontal
conveyors placed on the 2nd floor,
st.) =[1,8¢)),...,S(t,2)] « dumping of grain from horizontal conveyors to
wOorm conveyors,
where e dumping of grain from worm conveyors to
railway trucks.
S(t,u) In loading the railway trucks with grain the followg
1 for t<Q, presented irFigure 1transportation subsystems take
\(®) (56) Pt

] for t=0, S, — horizontal conveyors of the first type,

S, — vertical bucket elevators,

S — horizontal conveyors of the second type,
u=12...,z S, — worm conveyors,
the main distribution station and the balance.

D \ b
2 P exp[-n([A(u)]®t)

i) k® - k®, 1® _ o,
S, =[1,S(t)),...,S(t,2)]
where

S(t,u)
03 p, [1-exp[H ® expHAW)] ]

)

(57)
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MAIN DISTRIBUTION STATION 0 1 2
STORAGE a a
ath floor 9th floor 3 3
BALANCE 4 5
"r [Pulae = 9 0 9 (58)
FLAPS
4th floor 1 2
3 3 °
1 2 9
(e 5 I |
vy
- 5 More_o_ver, we assume the fo_IIowing matrix of the
conditional distribution functions of the system
' sojourn timesf,, b,1 =123
Figure 1.The scheme of the port grain transportation 0 1-e™ 1-e™

system structure [H. (0. =|1-e® 0 1— o
bl 3x3
—10t —20t
We will analyse the safety of the subsyst&nonly. 1-e 1-e 0
Taking into account the operation process of the

considered transportation system, described by it?—'urther according (1) we fix the conditional mean
operators, we distinguish its following =3 ’

operation states: values M, =E[6, ]b,I = 1234, of the system

z — the system operation with the largest sojourn times at the particular operation states as

- follows:
efficiency when all components of the W

subsystemss;, S,, S; andS, are used, M., = 020 M., = 010

z, — the system operation with less efficiency

system  when the first conveyor of |\ =0025M, =0.020 (59)
subsystem S, the first and second elevators of

subsystems,,the first conveyor of subsysters, M., = 010 M, = 005.

and the first and second conveyors of subsyssem

are used, This way, the exemplary system operation process is
z, — the system operation with least efficiency defined and we may find its main characteristics.

when only  the first  conveyor of Namely, applying (2), (58) and (59) unconditional
subsystems,, the first elevator of subsystesy, the ~ Mean sojourn times at the particular operatiorestat
first conveyor of subsyster®8, and the first are given by:

conveyor of subsysters, are used.

This way, the changes of the grain transportation
system safety structure at different operationestat 1 2

are defined. == 020+—=010=0.133 (60)
Considering the system operators opinion, we 3 3

assume the vector of approximate values of thialnit

Ml = E[Hl] = p12M12 + p13M13 + pl4Ml4

probabilities p, (0), b=1 23 M, =E[6,]= p,M,, + p,;M,,
[p. Ol =[2. 1} = %0.025+>0,020= 0022 (61)
b 1x3 3 ! 3 ! 3 9 9

of the system operation process staying at the M, =E[6;] = puM;; + p;,Mo,
particular statesz, at the timet =0 and the matrix

of the probabilities of transitions between thetega =
are given by

0.1o+§ 005= 0.067. (62)

wlk

Further, according to (4), the system of equations
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LALALAT LA A |0 [S)” .21 =exp[HA” @171,
T+ + T = 1
different at various operation states b= 1,23 and

after considering (58), takes the form with the intensities of departure from the saféffes
subsets {12}, {2}, respectively

T,

_4 1
1 _5772 +§ﬂ3

[A9 @17, 147 @1, b=123
_1o.2
=3 mrg 7 The influence of the system operation states
changing on the changes of the system safety
1 =§7Tl+§ 1, structure and its components safety functions is as

follows. Next will analyse the safety of the
subsystentS, only.
At the system operation state, the subsystens,

o+, =1

The approximate solutions of the above system of

equations are: consists of three chain conveyors forming series
subsystems K® =3), each composed of a wheel
7, 00279, m, 00.344, n, L0377 (63) driving the belt, a reversible driving wheel and)16

160 and 240 links respectively. Thus, two conveyors
have 162 components and the remaining one has 242

components I =162, I)Y =162,1Y =242) what
means that the subsystem is a non-homogeneous

According to (3), the limit values of the system
operation process transient probabilitipgt) at the

operation stateg, are given by non-regular three-state series-parallel systemth wi
the exponential safety functions. In two series
p, £ 0.530, p, L 0.109, p, C 0.361 (64)  subsystems of the subsystens, there are

respectively:
Taking into account the efficiency of the considere - 2 two driving wheels marked by E®,
port grain transportation system we distinguish the. . . . :
following three safety states of the systems aad it 1 =12, j =12, with a safety function co-ordinates
components:
state 2 —the state ensuring the largest efficiesfcy  [S{* (t1)]® = exp[-0.00§],
the system and its conveyors,
state 1 —the state ensuring less efficiency of the [S® (t,2)]® = exp[-0.008], t= 0,i =12, j =12;
system caused by throwing grain off the system
conveyors, _ @ i o
state 0 — the state involving failure of the system - 160 links marked byE;”, i =12, j =34,..162,
We assume that the system safety structure and itwith a safety function co-ordinates
subsystems and components safety depend on its
changing in time operation states. Considering the [S (t1)]® = exp[-0.013),
assumptions and agreements of these sections, we

assume that its subsystenfs, v¢,= 1234, are
composed of three-state, i.e. z = 3, components
Eij(“), v= 1234, having the conditional safety

functions given by the vector

[S¥(t,2)]® = exp[-0.014], t=0,
i=12, j=34,.]162.

In the third series subsystems of the subsysg&m
there are respectively:
- 2 two driving wheels marked by E®

i

(S (601" = [L,[S{” (D] [S© 2] ]

b=123 i =3, j =12, with a safety function co-ordinates

with the exponential co-ordinates
[SY (t1)]® = exp[-0.023],

[S)” D1 =exp[-[A}” W],
[S(t.2)]" = exp[-0.024],t>0,i =3, j =12
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- 240 links marked by E”, i =3, j =34,...,242, =1-[1-exp[-2.252]] % [[L- exp[-9.64&]

ij o
with a safety function co-ordinates
= 2exp[-2.252t] - 2exp[-11.900t] — exp[—4.504t]

[S¢ (t1)] = exp[-0.034),
+exp[-14.152t] + exp[-9.648]. (67)

[Sij(4) (t,2)] o = exp[_0.04®]’ t>0, “
The expected values of the subsystgpconditional

i =3 j=34,..242. lifetimes in the safety state subsets {¥2} at the
operation statez,, calculated from the results given

Thus, at the operation stai, the subsystens, is by (66)-(67), according to (11)-(12), respectivatg:
a three-state series-parallel system with its sirec
shape parameterg® =3, | =162, I =162,
1Y =242, and according to the formulae appearing
after Definition 3.11 in [8] and (30)-(31) its
conditional safety function is given by

4, (1) C0.785 41, (2) C 0.672month. (68)

At the system operation statg, the subsystens, ,
consists of three identical chain conveyors fognmin
series subsystemsk(?’ =2), each composed of a
[SOD® =L [S®ED]®, [S®.2)]®], (65) Wheel_ driving the belt, a reversible driving whaat
{20, 160 links (» =162, 1/¥ =162) what means that
the subsystem is a non-homogeneous regular three-
where state series_—parallel system with the exponential
safety functions. In the series subsystems of the

subsystens, there are respectively:
- 2 two driving wheels marked by E[,

i =12, j =12, with a safety function co-ordinates

[S @ (t!l)] ®= 83;162162242 (t ’1)

=1- [ L[] [R® 1”10~ [T IR (1))
- [S{” (1] ® = expl-0.008,

1- [ [1-exp- 3. [A® ] “ t]][L-expl-3 AL O] o
=1 = = [S? (t.2)]” = exp[-0.004],t20,i =12, j =12

_ _ " 2
1-[1-exp[-[0.005[2+0.01201601] - 160 links marked byE®, i =12, j=34,...162,

i

[[L- exp[-[0.022[2 + 0.034[240] with a safety function co-ordinates

=1-[1- exp[-1.93Q]] 2 [[1- exp[-8.204] [S)” (t:1)]* = exp[-0.008,

= 2 exp[-1.930t] - 2 exp[-10.134t] - exp[-3.860t] [S{” (t.2)]"” = exp[-0.016], t 2 0,
+exp[-12.064t] + exp[-8.204t], (66) =12 j=234,.162.
[S® (t,2)]” = Sy1e160000 {2 Thus, at the operation staig, the subsystens, is

a three-state series-parallel system with its &irec
(2) — (2) = (2) =
g 2o 2 01 22 e o shape parameterk® =2, 1/* =162, ;¥ =162,
=1 Dl[l J|‘:|l[SU. 2171 !:'1[531 2171 and according to the formulae appearing after
- Definition 3.11 in [8] and (30)-(31) its conditiona
safety function is given by
1-[] [1-expl-2.[A(" (2] “ ]| [1- expE-3. A ()]
i= j=1 j=1
1 | | [SY( 0% =[S D], [SY €217 (69)

= 1- [1- exp[-[0.006[2 + 0.014[16(t]

[[L- exp[-[0.024[2 + 0.040[ 240]]
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ij !
with a safety function co-ordinates

[S®tD]? =S, 1606 ) - 160 links marked by E®, i=1 j=34,..162,

=1- ||:|1 [1_!]1[80(4) (t ,1)] (2)] [Sij(4) (t1)] G = exp[-0.00YJ,

=1-[][L-expE3 [ 0] 1] [S” (t2)]© = exp[-0.008), 120,

i=1 j=34,.162.
=1-[1- exp[-[0.002[2 + 0.00816(¢]>

Thus, at the operation statg, the subsystensg, is

=1-[1-exp[-1.284]]° a three-state series-parallel system (a seriesrayst
with its structure shape parameterk® =1,

= 2exp[-1.284t] - exp[-2.5680], (70) 1@ =162, and according to the formulae appearing
after Definition 3.11 in [8] and (30)-(31) its

[S“(,2)]7=S,.66, t.2) conditional safety function is given by

2 162 ) ® - © (©) )] ®
:1_ [l [1_|—_|[SU(4) (t,2)] (2)] [S (t,D-J] [l: [S (tal)] ’ [S (t,Z)] ]1 (73)

t=0,
=1- |3|l [1—exp[—§[ili‘j‘” @191 where
N — [S® @]9 =S,,, ] =1- |-|[1 |'|[S(4>(t,1)](3)]

I eerLeoal = IS (01 = expES A7 0194

= 2exp[-1.608] — exp[-3.216Q]. (71)

exp[-[0.001[2 + 0.007[160Q]t]
The expected values of the subsystgptonditional

lifetimes in the safety state subsets {¥2} at the =exp[-1.122] (74)
operation statez, , calculated from the results given
by (70)-(71), according to (11)-(12), respectivatg: [S®(t,2)]7 =Sy ¢.2)

U, (@) C1.168 u, (2) C 0.933month. (72) 1

=1-[IL-1[S (t2)]°]

At the system operational stag, The subsystem
S, , consists of one chain conveyor forming a series — |—|[31<4) t.2)]® = expl 2[1(3) @)1°1]

system «® =1), composed of a wheel driving the =
belt, a reversible driving wheel and 160 Ilinks
(1 =162 ) with the exponential safetjunctions.

In the seriesystem of the subsyster®, there are
respectively:

- @
2 two driving wheels marked by E”, The expected values of the subsystgptonditional

i =1 j =12, with a safety function co-ordinates  |ifetimes in the safety state subsets {¥2} at the
operation statez,, calculated from the results given
by (74)-(75), according to (11)-(12), respectivaig:

= exp[-[0.003[2 + 0.009[160]]

=exp[-1.446] 75)

[S© (1] © = exp[-0.001],

[S (t,2)]® = exp[-0.008,t>0,i =1 j=12 1, (1) £ 0.8914,(2) C0.692month. (76)
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In the case when the subsyst&n operation time is LA =pu, @) + p, i, Q) + Papts @)
large enough its unconditional four-state safety
function is given by the vector =0.53000.785+ 0.109(1.168+ 0.361[0.891

S, =1,S“ 2, SU{,2)]t=0, (77) C 0.865 month. (80)
where according to (9) and considering the systenThe expected value of the system unconditional

operation process transient probabiliies at thelifetime in the safety state subset {2}, calculated
operation states determined by (64), the vector coaccording to (10) from the results given by (68),

ordinates are given respectively by (72), (76) and (64), is
SYED = p[SOEDI® + p,[SY (1] H2)=p () + Py, (2) + P35 (D)
+ p,[S (1))@ =0.530(0.672+ 0.10910.933+ 0.361(0.692
=0.53000S® (t1)]® +0.1090S® (t1)]? C 0.708 month. (81)
+03619S (1] fort20, (78) the mean values of the Unconditonal fetmesna

particular safety states 1, 2, respectively are:
S ¢,2) =p[S? 21" + p,[S?(t,2)]?
A =u@ - u(2) =0.157 month,

+p[S9(t2)]°
Z(2) = u(2) =0.708 month. (82)

=0.530S“ (t,2)]® +0.10900S“ (t,2)]® _ . ,
Since the critical safety state is= 1, then the

subsystemsS, risk function, according to (14) and

+0.36100S“ (t,2)]® fort >0, (79) (64). is given by

where the safety functions
[SYeD]?, [SPED]?, [S®(tY)]®are given by
(66), (70), (74) and[S“(t,2)]®, [S“(t.2)]?,

r(t) =1-s“¢))

=1-[0.53000S* (t1)]® + 0.10900S“ (t.1)]®

[8(4) (tvz)] ® are glven by (67), (71), (75) + 0361[['8(4) (t,l)] (3)] f0r t> o’ (83)
1 -
09 - where the safety functions [S® (t1)]?,
o ] [SEn]®, [S (D] ®are given by (66), (70),
06 - (74).
205 - "
Toa 0.9 _
03 1 t1 '
02 N 0 |
01 0.7 1
0 ‘ 0.6 -
0 0.5 1 1.5 2 25 ta 0.5 -
0.4
Figure 2 The graph of the subsyste®) safety 03 -
function S ¢ Dcoordinates. :i
0 r r r r |
The expected value of the subsysters, 0 05 1 15 3 a5 ¢

unconditional lifetime in the safety state subdgf,

calculated according to (10) from the results gilign Figur.e3. The graph of the subsystens, risk
(68), (72), (76) and (64), is functionr(t)
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Hence, by (15), the moment when the system risk]
function exceeds a permitted level, for instadce
0.05, is

r=rd) £0.102 (84) [8]

6. Conclusions

The integrated general model of complex systemﬁg]
safety, linking their safety models and their ofiera
processes models and considering variable [f@]
different operation states their safety structuaad

their components safety parameters is constructed.
The material given in this chapter delivers the
procedures and algorithms that allow to find thénmg 1]
an practically important safety characteristicsthad
complex technical systems at the variable operation
condition. Next the results aapplied to the safety
evaluation of the one subsystem of the port grq{'@z]
transportation system. The predicted safety
characteristics of the exemplary system operating a
the variable conditions are different from those
determined for this system operating at constgpg
conditions. This fact justifies the sensibility o
considering real systems at the variable operation
conditions that is appearing out in a natural waynf [14]
practice. This approach, upon the good accuracy of
the systems’ operation processes and the systems’
components safety parameters identification, makes
their safety prediction more precise. [15]
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