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Abstract 
 

There are presented general safety analytical models of complex multistate technical systems related to their 
operation processes. They are the integrated general models of complex technical systems, linking their 
multistate safety  models and their operation processes models and considering variable at the different 
operation states safety structures and their components safety parameters. The conditional safety functions at 
the system particular operation states and independent of the system particular operation states the 
unconditional safety function and the risk function of the complex technical systems are defined. These joint 
models of the safety and the variable in time system operation processes are constructed for multistate series, 
parallel, “m out of n”, consecutive “m out of n: F”, series-parallel, parallel-series, series-“m out of k”, “ mi out of 
l i”-series, series-consecutive “m out of k: F” and consecutive “mi out of l i: F”-series  systems. The joint models 
are applied to determining safety characteristics of these systems related to their varying in time safety 
structures and their components safety characteristics. Under the assumption that the considered systems are 
exponential, the unconditional safety functions of these systems are determined.  
The proposed models and methods are applied to the safety analysis, evaluation and prediction of the one 
subsystem of the port grain transportation system related to varying in time their operation processes, structures 
and components safety parameters. 
 
1. Introduction  

Most real technical systems are structurally very 
complex and they often have complicated operation 
processes. Large numbers of components and 
subsystems and their operating complexity cause that 
the evaluation and prediction of their safety is 
difficult. The time dependent interactions between 
the systems’ operation processes operation states 
changing and the systems’ structures and their 
components safety states changing processes are 
evident features of most real technical systems. The 
common safety and operation analysis of these 
complex technical systems is of great value in the 
industrial practice. The convenient tools for 
analyzing this problem are the multistate system’s 
safety modeling [8], [15-17] commonly used with the 
semi-Markov modeling [1-3], [4], [5], [9], [10] of the 
systems operation processes, leading to the 
construction the joint general safety models of the 
complex technical systems related to their operation 
process [6], [8], [7], [11], [13]. The main objective of 

this chapter is to present recently developed, the 
general safety analytical models of complex non-
repairable and repairable multistate technical systems 
related to their operation processes [6], [7], [8] and to 
apply them practically to real industrial systems and 
processes [8], [12], [11], [13]. In the case of large 
systems, the determination of the exact safety 
functions of the systems and the system risk 
functions leads us to very complicated formulae that 
are often useless for safety practitioners. One of the 
important techniques in this situation is the 
asymptotic approach [5], [8] to system safety and 
safety evaluation. This aspect of complex technical 
systems is also shortly discussed in this paper.    
 
2. System operation at variable conditions 

We assume that the system during its operation 
process is taking ,, Nv ∈ν  different operation states 

..,..,, 21 νzzz  Further, we define the system operation 

process )(tZ , ),,0 +∞∈<t  with discrete operation 
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states from the set }..,..,,{ 21 νzzz  Moreover, we 
assume that the system operation process Z(t) is a 
semi-Markov process [4], [7], [8], [11]-[14] with the 
conditional sojourn times 

bl
θ  at the operation states 

b
z  when its next operation state is ,

l
z  ,,...,2,1, vlb =  

.lb ≠  Under these assumptions, the system operation 
process may be described by:   
- the vector νx1)]0([

b
p  of the initial probabilities 

),)0(()0(
bb

zZPp ==  ,,...,2,1 vb =  of the system 
operation process Z(t) staying at particular operation 
states at the moment 0=t ;  
- the matrix ννx][ blp  of probabilities ,blp  

,,...,2,1, vlb =  ,lb ≠  of the system operation process 

Z(t) transitions between the operation states bz  and 

lz ;  

- the matrix ννx)]([ tH bl  of conditional distribution 

functions )()( tPtH blbl <= θ , ,0≥t  ,,...,2,1, vlb =  

,lb ≠  of the system operation process Z(t) 

conditional sojourn times blθ  at the operation states.  

As the mean values ][ blE θ  of the conditional sojourn 

times blθ  are given by  
  

  ][ blbl EM θ= ∫=
∞

0

),(ttdH
bl

 ,,...,2,1, vlb =  ,lb ≠    (1)    

 
then from the formula for total probability, it follows 
that the unconditional distribution functions of the 
sojourn times ,bθ ,,...,2,1 vb =  of the system 

operation process )(tZ  at the operation states ,bz  
,,...,2,1 vb =  are given by [8], [11]-[14]  

       

   )(tHb  = ∑
=

v

l
blbl

tHp
1

),(  ,0≥t  .,...,2,1 vb =                                                                                               (6) 

 
Hence, the mean values ][

b
E θ  of the system 

operation process )(tZ  unconditional sojourn times 

,
b

θ  ,,...,2,1 vb =  at the operation states are given by   
       

   ][ bb EM θ=  = ∑
=

v

l
blbl Mp

1
, ,,...,2,1 vb =                 (2)                         

 
where blM  are defined by the formula (1).  
The limit values of the system operation process 

)(tZ  transient probabilities at the particular 

operation states )(tp
b

= P(Z(t) = bz ) , ),,0 +∞∈<t  

,,...,2,1 vb =  are given by [8], [11]-[14]  
  

   
b

p  = )(lim tpb
t ∞→

= ,

1
∑
=

v

l
ll

bb

M

M

π

π
 ,,...,2,1 vb =               (3)     

where ,bM  ,,...,2,1 vb =  are given by (2), while the 

steady probabilities 
b

π  of the vector νπ
xb 1][  satisfy 

the system of equations   
 

   






∑ =

=

=

v

l
l

blbb
p

1
.1

]][[][

π

ππ
                                                (4) 

 
3. Safety of multistate systems at variable 
operation conditions 

We assume that the changes of the operation states of 
the system operation process Z(t) have an influence 
on the system multistate components iE , 

,,...,2,1 ni =  safety and the system safety structure as 
well. Consequently, we denote the system multistate 
component iE , ,,...,2,1 ni =  conditional lifetime in 

the safety state subset },...,1,{ zuu +  while the 

system is at the operation state ,bz ,,...,2,1 vb =  by 

)()( uT b
i  and its conditional safety function by the 

vector 

    
)()],([ b

i tS ⋅ = [1, ,)]1,([ )(b
i tS ..., )()],([ b

i ztS ],     (4)                                     
 
with the coordinates defined by 

   
))()(()],([ )()(

b
b

i
b

i ztZtuTPutS =>=                   (5)               

 
for ),,0 ∞∈<t  ,,...,2,1 zu = .,...,2,1 vb =  

The safety function )()],([ b
i utS  is the conditional 

probability that the component iE  lifetime )()( uT b
i  

in the safety state subset },...,1,{ zuu +  is greater than 
t, while the system operation process Z(t) is at the 
operation statebz . 
     Similarly, we denote the system conditional 
lifetime in the safety state subset },...,1,{ zuu + while 

the system is at the operation state ,bz ,,...,2,1 vb =  

by )()( uT b  and the conditional safety function of the 

system by the vector  
 
   )()],([ bt ⋅S  = [1, ,)]1,([ )(btS ..., ])],([ )(bztS ,           (6)    
                
with the coordinates defined by 

   )()],([ butS ))()(( )(
b

b ztZtuTP =>=                    (7)                           

 
for ),,0 ∞∈<t  ,,...,2,1 zu = .,...,2,1 ν=b   

The safety function )()],([ butS   is the conditional 

probability that the system lifetime )()( uT b  in the 
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safety state subset },...,1,{ zuu +  is greater than t, 
while the system operation process Z(t) is at the 
operation state .bz  
Thus,  the system conditional lifetimes in the safety 
states subset },...,1,{ zuu +  at the operational state 

bz  
 

   
))(),...,(),(()( )()(

2

)(

1

)( uTuTuTTuT b

n

bbb =
 

 
defined for ,,...,2,1 zu = ,,...,2,1 ν=b  ,Nn∈  are 
dependent on the components conditional lifetimes 

),()(
1 uT b ),()(

2 uT b

 
…, ),()( uT b

n  
in the safety states 

subset },...,1,{ zuu +  at the operation state bz  and
 

the coordinates of the system conditional safety 
function at the operation state bz  
 

   
)()],([ butS
 

 

   
))],([,...,)],([,)],(([ )()(

2
)(

1
b

n
bb utSutSutSS=

 
 

defined for ),,0 ∞∈<t ,,...,2,1 zu = ,,...,2,1 ν=b  

,Nn∈  are dependent on the coordinates ,)],([ )(
1

butS
 

,)],([ )(
2

butS
 

…, ,)],([ )(b
n utS of the components 

conditional safety functions at the operation state bz . 
     Further, we denote the system unconditional 
lifetime in the safety state subset },...,1,{ zuu +  by 

)(uT  and the unconditional safety function of the 
system by the vector   

   ),( ⋅tS  = [1, ),1,(tS ..., ),( ztS ],                            (8) 
 
with the coordinates defined by 
 
   ),( utS ))(( tuTP >=  
 
for ),,0 ∞∈<t  .,...,2,1 zu =   

In the case when the system operation time θ  is 
large enough, the coordinates of the unconditional 
safety function of the system defined by  (8) are 
given by  

   ),( utS )(

1
]),([ b

v

b
b utp∑≅

=
S  for 0≥t , ,,...,2,1 zu = (9) 

 
where )()],([ butS , ,,...,2,1 zu = ,,...,2,1 ν=b are the 
coordinates of the system conditional safety 
functions defined by (6)-(7) andbp , ,,...,2,1 ν=b are 
the system operation process limit transient 
probabilities given by (3). 

The mean value of the system unconditional lifetime 
)(uT  in the safety state subset },...,1,{ zuu +  is  

given by [7], [8], [11]-[14] 
 

   ,)()(
1
∑≅
=

ν
µµ

b
bb upu  ,,...,2,1 zu =                        (10) 

 
where )(ubµ are the mean values of the system 

conditional lifetimes )()( uT b  in the safety state 

subset },...,1,{ zuu +  at the operation state ,bz  
,,...,2,1 ν=b  given by 

 

   ∫=
∞

0

)( ,)],([)( dtutu b
b Sµ  ,,...,2,1 zu =                 (11) 

 
)()],([ butS , ,,...,2,1 zu =  ,,...,2,1 ν=b  are defined by 

(6)-(7) and bp  are given by (3). Whereas, the 
variance of the system unconditional lifetime )(uT  
is given by  

   ∫=
∞

0

2 2)( tuσ ,)]([),( 2udtut µ−S   ,,...,2,1 zu =   (12) 

 
where ),( utS , ,,...,2,1 zu =  are given by (8)-(9) and 

),(uµ  ,,...,1,0 zu =  are given by (10)-(11).   
Hence, according to (1.19) [8], we get the following 
formulae for the mean values of the unconditional 
lifetimes of the system in particular safety states   

   ),1()()( +−= uuu µµµ  ,1,...,1,0 −= zu     

 
   ),()( zz µµ =                                                       (13) 
 
where ),(uµ  ,,...,1,0 zu =  are given by (10)-(11).  
Moreover, according (1.20)-(1.21) [8], if r is the 
system critical safety state, then  the system risk 
function is given by  

   r(t) = −1  ),( rtS , ),,0 ∞∈<t                              (14) 
 
where ),( rtS  is the coordinate of the system 
unconditional safety function given by (9) for ru =  
and if τ is the moment when the system risk function 
exceeds a permitted level δ, then   

   =τ r ),(1 δ−                                                            (15) 
 
where r )(1 t− , if it exists, is the inverse function of 
the risk function r(t) given by (14). 

Further, we assume that the system components ,iE  
,,...,2,1 ni =  at the system operation states 
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,bz ,,...,2,1 vb =  have the exponential safety 
functions, i.e. their coordinates are given by    
 

   

])]([exp[

))()(()],([

)(

)()(

tu

ztZtuTPutS

b
i

b
b

i
b

i

λ−=

=>=

 

 
for ),,0 ∞∈<t ,,...,2,1 zu = ,,...,2,1 ν=b  and we have  
 
   )()],([ butS ))()(( )(

b

b ztZtuTP =>=
 

 

   
)()()(

2
)(

1 )])],([,...,)],([,)],(([[ bb
n

bb utSutSutSS=
 

 

   
)()(

)(
2

)(
1

])])]([exp[

],...,)]([exp[],)]([(exp[[

bb
n

bb

tu

tutu

λ

λλ

−

−−= S

  

 
for ),,0 ∞∈<t  ,,...,2,1 zu = ,,...,2,1 ν=b  .Nn∈  
 
The reason for this strong assumption on the system 
components is that the exponential distribution has 
“no memory” expressed in the following property  
 

   
)(

0 )],([ b
i uttS +

 
 

   
))()(/)(( 0

)(
0

)(
b

b
i

b
i ztZtuTttuTP =>+>=

 
 

   
))()()(( 0

)(
0

)(
b

b
i

b
i ztZtuTttuTP =>∩+>=

 
 

   
))()((/ 0

)(
b

b
i ztZtuTP =>

 
 

   
))()(( 0

)(
b

b

i ztZttuTP =+>= ))()((/ 0
)(

b

b

i ztZtuTP =>
 

 
   ])]([exp[/)()]([exp[ )(

0
)(

o
b

i
b

i tuttu λλ −+−=  
 
   ])]([exp[ )( tu b

iλ−=  
 

   
))()(( )(

b
b

i ztZtuTP =>=
 

)()],([ b
i utS=

 
 
for  ),00 ∞∈<t  and ),,0 ∞∈<t .,...,2,1 zu =  
Both of them, the assumption about the exponential 
safety functions of the system components and the 
above property, justify the following form of the 
formula (9) 
 

   ),( utS ∑≅
=

v

b

b
b utp

1

)()],([S  

 

   ∑ −−=
=

v

b

bb
b tutup

1

)(
2

)(
1 ])]([exp[],)]([(exp[[ λλR  

 
   )()( ])])]([exp[,..., bb

n tuλ−  
 
for 0≥t , .,...,2,1 zu =  
The application of the above formula and the results 
given in Chapter 1 [8] yield the following results 
formulated in the form of the following proposition. 
Proposition 1  
If components of the multi-state system at the 
operation state ,bz ,,...,2,1 ν=b  have the exponential 
safety functions given by 

   ],)],([,,)]1,([,1[)],([ )()()( b
i

b
i

b
i ztStStS K=⋅         (16) 

 
   t ∈ (−∞,∞), ,,...,2,1 ν=b   
 
where   

 
   1)],([ )( =b

i utS  for t < 0, 
 
   ])]([exp[)],([ )()( tuutS b

i
b

i λ−=  for t ≥ 0,      

 
   ,0)]([ )( >b

i uλ                                                      (17) 
                                           
   i = 1,2,...,n, u = 1,2,…,z, ,,...,2,1 ν=b        
 
in the case of series, parallel, “m out of n”, 
consecutive “m out of n: F” systems and respectively 
by 

   ],)],([,,)]1,([,1[)],([ )()()( b
ij

b
ij

b
ij ztStStS K=⋅        (18) 

 
   t ∈ (−∞,∞), ,,...,2,1 ν=b   
 
where   

 
   1)],([ )( =b

ij utS  for t < 0, 

 
   ])]([exp[)],([ )()( tuutS b

ij
b

ij λ−=  for t ≥ 0,      

   
   ,0)]([ )( >b

ij uλ                                                   (19) 

 
i = 1,2,...,k, j = 1,2,...,l i, u = 1,2,…,z, ,,...,2,1 ν=b  

 
in the case of series-parallel, parallel-series, series-
“m out of k”, “ mi out of l i”-series, series-consecutive 
“m out of k: F” and consecutive “mi out of l i: F”-
series systems and the system operation time θ  is 



Journal of Polish Safety and Reliability Association 
Summer Safety and Reliability Seminars, Volume 5, Number 2, 2014 

 

 131

large enough, then its multistate unconditional safety 
function is given by the vector: 
i) for a series system  

   ),( ⋅tnS  = [1, )1,(tnS ,..., ),( ztnS ],                      (20) 
 
where    

   1),( =utnS  for ,0<t  

   ),( utnS ≅ ])]([exp[
1

)(

1
∑−∑
==

n

i

b
i

v

b
b tup λ                  (21) 

for ,0≥t  ;,...,2,1 zu =                                                      
 
ii) for a parallel system  

   Sn(t ⋅, ) = [1,Sn(t,1),...,Sn(t,z)],                             (22) 
 
where   

   Sn(t,u) ≅ ∏ −−∑−
==

n

i

b
i

v

b
b tup

1

)(

1
]])]([exp[1[1 λ         (23) 

 
   for ,0≥t  ;,...,2,1 zu =     
 
iii) for a “m out of n” system 

   S m

n (t ⋅, ) = [1,S m

n (t,1),...,S m

n (t,z)],                        (24) 
 
where   
 
   1),( =utm

nS  for ,0<t  

   ),( utm
nS  

 

   ∑ ∏ −∑−≅
−≤+++

= ==

1

1...21
0,...,2,1 1

)(

1
])]([exp[1

mnrrr
nrrr

n

i

b
ii

v

b
b turp λ  

 
   nb

i tu −−− 1)( ]])]([exp[1[ λ                (25) 

 
  for ,0≥t   u = 1,2,...,z, 
 
or  
 
   ),( ⋅tm

nS  = [1, )1,(tm
nS ,..., ),( ztm

nS ],                   (26) 
 
where  

   1),( =utm
nS  for ,0<t  

   ∑ −−∏∑≅
≤+++
= ==

1

...21
0,...,2,1

)(

11
]])]([exp[1[),(

mnrrr
nrrr

irb
i

n

i

v

b
b

m
n tuput λS  

 
   ])]()[1(exp[ )( tur b

ii λ−−                                       (27) 

  
   for ,0≥t  ,mnm −= ;,...,2,1 zu =  
 
iv) for a consecutive “m out of n: F” system  

   ),( ⋅tm
nCS  = [1, )1,(tm

nCS ,..., ),( ztm
nCS ],             (28) 

 
where  
 
   1),( =utm

nCS  for ,0<t   

 



















>−−∏

∑ −+

−∑

∏ =−−∑−

<

≅

+−=

−

=
−

−
=

==

,for]])]([exp[1[

)],(][)]([exp[

)],(][)]([exp[

,for]])]([exp[1[1

,for1

),(

)(

1

1

1

)(
1

)(

)(
1

)(

1

1

)(

1

mntu

uttu

uttup

mntup

mn

ut

b
j

n

inj

m

i

bm
n-i-

b
in

bm
n

b
n

v

b
b

n

i

b
i

v

b
b

m
n

λ

λ

λ

λ

CS

CSCS

   

                                               

                                                          (29) 
   for ,0≥t  ;,...,2,1 zu =  
 
v) for a series-parallel system  
 
   ),(,...,2,1; ⋅t

klllkS  

 
   =[1, )1,(,...,2,1; t

klllkS ,..., ),(,...,2,1; zt
klllkS ],                (30) 

 
where   
 
   1),(,...,2,1; =ut

klllkS  for ,0<t  

   ),(,...,2,1; ut
klllkS  

   ≅ ∏ ∑−−∑−
= ==

k

i

il

j

b
ij

v

b
b tup

1 1

)(

1
]])]([exp[1[1 λ                  (31) 

for ,0≥t ;,...,2,1 zu =   
vi) for a parallel-series system 
 
   ),(,...,2,1; ⋅t

klllkS   
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   = [1, )1,(,...,2,1; t
klllkS ,..., ),(,...,2,1; zt

klllkS ]              (32) 
 
where   
  
   1),(,...,2,1; =ut

klllkS  for ,0<t  

 
   ),(,...,2,1; ut

klllkS  

 

   ≅ ∏ −−∏ −∑
===

il

j

b
ij

k

i

v

b
b tup

1

)(

11
]]])]([exp[1[1[ λ             (33) 

 
   for ,0≥t ;,...,2,1 zu =  

 
vii) for a series-“m out of k” system 

   ),(,...,2,1; ⋅tm

klllkS   

   = [1, )1,(,...,2,1; tm

klllkS ,..., ),(,...,2,1; ztm

klllkS ],               (34) 

 
where 
 
   1),(,...,2,1; =utm

klllkS  for ,0<t  

   
∑ ∏ −∏∑−≅

−≤+++
= ===

1

1...21

0,...,2,1 1

)(

11

,...,2,1;

]])]([exp[[1

),(

mkrrr
krrr

il

j

irb
ij

k

i

v

b
b

m

klllk

tup

ut

λ

S

 

   irb
ij

il

j
tu −

=
−∏−⋅ 1)(

1
]])]([[exp1[ λ                                  (35) 

for ,0≥t ,,...,2,1 zu =   

  
or 

   ),(,...,2,1; ⋅tm

klllkS  

 
    = [1, )1,(,...,2,1; tm

klllkS ,..., ),(,...,2,1; ztm

klllkS ],              (36) 

 
where 

   1),(,...,2,1; =utm

klllkS  for ,0<t  

 
   ),(,...,2,1; utm

klllkS  

   ∑ ∏ −−∏∑≅
≤+
= ===

1

,...2,1

0,...,2,1 1

)(

11
]])]([exp[[1[

mkrrr
krrr

il

i

irb
ij

k

i

v

b
b tup λ  

 

   irb
ij

il

j
tu −

=
−∏⋅ 1)(

1
]])]([[exp[ λ                                     (37) 

 
for ,0≥t  ,mkm −=  ;,...,2,1 zu =   
 
viii) for a “ im  out of il ”-series system 

   ),(,...,2,1
,...,2,1; ⋅tkmmm

klllkS   

   = [1, )1,(,...,2,1
,...,2,1; tkmmm

klllkS ,..., ),(,...,2,1
,...,2,1; ztkmmm

klllkS ],            (38) 

 
where 
 
   1),(,...,2,1

,...,2,1; =utkmmm

klllkS  for ,0<t  

   

∑ −∏−∏∑≅
−≤+++

= ===

1

1...21

0,...,2,1

)(

111

,...,2,1
,...,2,1;

]])]([[exp1[

),(

imilrrr
ilrrr

b
ijj

il

j

k

i

v

b
b

kmmm

klllk

turp

ut

λ

S

 

   ]]])]([exp[1[
1)( jrb

ij tu
−−−⋅ λ                                 (39) 

   for ,0≥t ,,...,2,1 zu =   
   
or  

   ),(,...,2,1
,...,2,1; ⋅tkmmm

klllkS   

 

   = [1, )1,(,...,2,1
,...,2,1; tkmmm

klllkS ,..., ),(,...,2,1
,...,2,1; ztkmmm

klllkS ],           (40) 

 
where 
 
   1),(,...,2,1

,...,2,1; =utkmmm

klllkS  for ,0<t  
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≤+++
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...21

0,...,2,1
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,...,2,1
,...,2,1;

]])]([exp[1[[
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imilrrr
ilrrr
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ij
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j
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i

v

b
b

kmmm

klllk
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λ
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   ]])]()[1(exp[ )( tur b

ijj λ−−⋅                                  (41) 

    
 for ,0≥t  ,iii mlm −=  ,,...,2,1 ki =  ;,...,2,1 zu =  
 
ix) for a series-consecutive “m out of k: F” system 



Journal of Polish Safety and Reliability Association 
Summer Safety and Reliability Seminars, Volume 5, Number 2, 2014 

 

 133

   ),(
21; ⋅tm

k,...,l,llkCS   

 
   = [1, )1,(

21; tm

k,...,l,llkCS ,..., ),(
21; ztm

k,...,l,llkCS ],          (42) 

 
where 
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21; =utm

k,...,l,llkCS  for ,0<t  

   ∑≅
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ν

1
21; [),(
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k,...,l,llk putCS )(

21; )],( bm

k,...,l,llk utCS        (43) 

for ,0≥t  ,,...,2,1 zu =   
 
and )(

21; )],([ bm

k,...,l,llk utCS , ,,...,2,1 ν=b  are given by 
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for ,0≥t ;,...,2,1 zu =  
 
x) for a consecutive “mi out of l i: F”-series system 

   ),(,...,2,1
21; ⋅tkmmm

k,...,l,llkSC   

   = [1, )1,(,...,2,1
21; tkmmm

k,...,l,llkSC ,..., ),(,...,2,1
21; ztkmmm

k,...,l,llkSC ],      (45) 

 
where  
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==

ν
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for ,0≥t  ,,...,2,1 zu =   
 
and [ ,)],( )(

,
bim

ili utCS  i= 1, 2,… , k, ,,...,2,1 ν=b  are 

given by  
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    (47) 

for ,0≥t .,...,2,1 zu =  
 
Remark 1 
The formulae for the safety functions stated in 
Proposition 1 are valid for the considered systems 
under the assumption that they do not change their 
structures at diferrent operation states ,bz  

.,...,2,1 ν=b This limitation can be simply omitted by 
the replacement in these formulae the system’s 
structure shape constant parameters ,n ,m ,k ,im ,il  
espectively by their changing at diferrent operation 
states ,bz ,,...,2,1 ν=b  equivalent structure shape 

parameters ,)(bn ,)(bm ,)(bk ,)(b
im  ,)(b

il  .,...,2,1 ν=b  
For the exponential complex technical systems, 
considered in Proposition 1, we determine the mean 
values )(uµ  and the standard deviations )(uσ  of the 
unconditional lifetimes of the system in the safety 
state subsets },,...,1,{ zuu +  ,,...,2,1 zu =  the mean 
values )(uµ  of the unconditional lifetimes of the 
system in the particular safety states ,u  ,,...,2,1 zu =  
the system risk function r(t) and the moment τ  when 
the system risk function exceeds a permitted level δ  
respectively defined by (10)-(15), after substituting 
for ),( utS , ,,...,2,1 zu =  the coordinates of the 
unconditional safety functions given respectively by 
(20)-(47). 
 
4. Asymptotic approach to safety of large 
multistate systems at variable operation 
conditions 

In the case of large systems, the determination of the 
exact safety functions of the complex systems and 
the system risk functions, sometimes, leads us to 
very complicated formulae that are often useless for 
safety practitioners. One of the important techniques 
that can be useful in this situation is the asymptotic 
approach [5], [8] to system safety evaluation. In this 
approach, instead of the preliminary complex 
formula for the system safety function, after 
assuming that the number of system components 
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tends to infinity and finding the limit safety of the 
system, we can obtain its simplified form. Moreover, 
in the case of large systems, the possibility of 
combining the results of the safety joint models of 
complex technical systems and the results concerning 
the limit safety functions of the considered systems is 
possible. This way, the results concerned with 
asymptotic approach to estimation of non-repairable 
multi-state systems at variable operation conditions 
may be obtained. Main results concerning asymptotic 
approach to multi-state large system safety with 
ageing components in the constant operation 
conditions are comprehensively presented in the 
work [5], [8] and some of these results’ extentions to 
the systems operating at the variable conditions can 
be found in [8]. 
In order to combine the results on the safety of multi-
state systems related to their operation processes and 
the results concerning the limit safety functions of 
the multistate systems, and to obtain the results on 
the asymptotic approach to the evaluation of the 
large multi-state systems safety at the variable 
operation conditions, we assume the following 
definition [8]. 
Definition 1  
A safety function    
 
   ),,()],,(),...,1,(,1[),( ∞−∞∈=⋅ tzttt SSS        (48) 
 
where  

 

  ,]),([),( )(

1

b
v

b
b utput ∑=

=
SS  ,,...,2,1 zu =              (49) 

                                                                                                
is called a limit safety function of a complex 
multistate system with the safety function sequence  
 
   ),()],,(),...,1,(,1[),( ∞−∞∈=⋅ tzttt nnn SSS ,   (50)   
   ,Nn∈             
 
where 
 

   )(

1
]),([),( b

v

b
nbn utput ∑≅

=
SS , ,,...,2,1 zu =           (51)                       

 
if there exist normalizing constants  
 

   ,0)()( >ua b
n  ),,()()( ∞−∞∈ub b

n   
 
   ,,...,2,1 zu = ,,...,2,1 vb =  
such that  
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utuubtua S=+
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for all t  from the sets of continuity points )()]([ bu
C

ℜℜℜℜ
 

of the functions )()],([ butS , ,,...,2,1 zu =  .,...,2,1 vb =  

Hence, for sufficiently large ,n  the following 
approximate formulae are valid  
 
   ),,()],,(),...,1,(,1[),( ∞−∞∈=⋅ tzttt nnn SSS    (52) 
 
where 
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put ∑

−
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   ),,( ∞−∞∈t .,...,2,1 zu =           
 
The following propositions concerned with the large 
series-parallel and parallel-series exponential 
systems operating at the variable operation states are 
exemplary results that can be worked out on the basis 
of the results included in [5], [8] for the considered 
in the paper large systems.     
Proposition 2 
If components of the multistate series-parallel regular 
system at the operation states ,bz ,,...,2,1 vb =  i.e., 
the system with the structure shape parameters such 
that  

,)(b
nkk =  ,... )(

21
b

nk llll ====  ,,...,2,1 vb =  ,Nn∈  
have the exponential safety functions given by (18)-
(19) are homogeneous, i.e.,  
 
   ,)]([)]([ )()( bb

ij uu λλ =  ,,...,2,1 )(b
nki =  

 
   ,,...,2,1 )(b

nlj =  ,,...,2,1 vb =  
 
then the system unconditional multistate safety 
function is given by the approximate formulae, 
respectively in the following cases of the system 
structure shape at the particular operation states:  
i) ,)( nk b

n =  ,0)( >b
nl  

    
   ),⋅tS  = [1, )1,(tS ,..., ),( ztS ] 
 
where    
 

   ≅),( utS ]])]([exp[exp[1 )()(

1
tlunp b

n
b

v

b
b λ−−∑−

=
 (54) 

 
for t ∈ (-∞,∞),  ;,...,2,1 zu =  
 

,)()( bb
n kk →  ,)( ∞→b

nl  
 
   ),( ⋅tS  = [1, )1,(tS ,..., ),( ztS ] 



Journal of Polish Safety and Reliability Association 
Summer Safety and Reliability Seminars, Volume 5, Number 2, 2014 

 

 135

where    
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.,...,2,1 zu =  
 
Proposition 3 
If components of the multistate parallel-series regular 
system at the operation states ,bz ,,...,2,1 vb =  i.e., 
the system with the structure shape parameters such 
that  

,)(b
nkk =  ,... )(

21
b

nk llll ====  ,,...,2,1 vb =  ,Nn∈  
have the exponential safety functions given by (18)-
(19) are homogeneous, i.e.,  
 
   ,)]([)]([ )()( bb

ij uu λλ =  ,,...,2,1 )(b
nki =   

 
   ,,...,2,1 )(b

nlj =  ,,...,2,1 vb =  
 

then the system unconditional multi-state safety 
function is given by the approximate formulae, 
respectively in the following cases of the system 
structure shapes at the particular operation states:  
 
i) ,)( nk b

n =  ,)()( bb
n ll → ,0)( >bl  
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ii) ,)()( bb
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 for t ∈ (-∞,∞), .,...,2,1 zu =  
 
It is possible to obtain similar and more general 
results for other considered in the paper multistate 
systems after some modification of the results 
included in [5], [8]. 
 
5. Application 

As an example we will analyse the safety of one of 
the subsystems of the port grain elevator in its 
operation process. The considered system is 
composed of four multi-state non-homogeneous 
series-parallel transportation subsystems and it is the 
basic structure in the Baltic Grain Terminal of the 
Port of Gdynia assigned to handle and clearing of 
exported and imported grain. One of the basic 
elevator functions is loading railway trucks with 
grain. The railway truck loading is performed in the 
following successive grain transportation system 
steps: 
• gravitational passing of grain from the storage 

placed on the 8th elevator floor through 45 hall to 
horizontal conveyors placed in the elevator 
basement,  

• transport of grain through horizontal conveyors to 
vertical bucket elevators transporting grain to the 
main distribution station placed on the 9th floor, 

• gravitational dumping of grain through the main 
distribution station to the balance placed on the 
6th floor, 

• dumping weighed grain through the complex of 
flaps placed on the 4th floor to horizontal 
conveyors placed on the 2nd floor, 

• dumping of grain from horizontal conveyors to 
worm conveyors, 

• dumping of grain from worm conveyors to 
railway trucks. 

In loading the railway trucks with grain the following 
presented in Figure 1 transportation subsystems take 
part: 
   S1 – horizontal conveyors of the first type, 
   S2 – vertical bucket elevators,  
   S3 – horizontal conveyors of the second type, 
   S4 – worm conveyors, 
the main distribution station and the balance. 
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Figure 1. The scheme of the port grain transportation 
system structure 

 
We will analyse the safety of the subsystem 4S  only. 
Taking into account the operation process of the 
considered transportation system, described by its 
operators,  we distinguish its following 3=ν  
operation states: 

1z  – the system operation with the largest 
efficiency when all components of the                   
subsystems ,1S  ,2S  3S  and 4S  are used, 

2z  – the system operation with less efficiency 
system when the first conveyor of                   
subsystem ,1S  the first and second elevators of 

subsystem ,2S the first conveyor of subsystem 3S  
and the first and second conveyors of subsystem 4S  
are used,  

3z  – the system operation with least efficiency 
when only the first conveyor of                    
subsystem ,1S the first elevator of subsystem ,2S  the 

first conveyor of subsystem 3S  and the first 
conveyor of subsystem 4S  are used. 
This way, the changes of the grain transportation 
system safety structure at different operation states 
are defined.  
Considering the system operators opinion, we 
assume the vector of approximate values of the initial 
probabilities ),0(bp  ,3,2,1=b  
 

   ]
3

1
,

3

1
,

3

1
[)]0([ 31 =xbp  

 
of the system operation process staying at the 
particular states bz  at the time 0=t  and the matrix 
of the probabilities of transitions between the states 
are given by 
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Moreover, we assume the following matrix of the 
conditional distribution functions of the system 
sojourn times ,blθ  ,3,2,1, =lb  
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Further, according (1) we fix the conditional mean 
values ],[ blbl EM θ= ,4,3,2,1, =lb  of the system 
sojourn times at the particular operation states as 
follows:    
 
   20.012 =M  10.013 =M  
 
   025.021 =M 020.023 =M                                   (59) 
 
   10.031 =M .05.032 =M                                                                                      
 
This way, the exemplary system operation process is 
defined and we may find its main characteristics. 
Namely, applying (2), (58) and (59) unconditional 
mean sojourn times at the particular operation states 
are given by:  
 
   == ][ 11 θEM 141413131212 MpMpMp ++  
 

   ,133.010.0
3

2
20.0

3

1 =+=                                  (60)                     

 
   == ][ 22 θEM 23232121 MpMp +     
 

   ,022.0020.0
9

5
025.0

9

4 =+=                              (61)         

                                                                          

   == ][ 33 θEM 32323131 MpMp +  
 

   .067.005.0
3

2
10.0

3

1 =+=                                  (62)      

 

   Further, according to (4), the system of equations 
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after considering (58), takes the form  
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The approximate solutions of the above system of 
equations are:   
 
   ,279.01 ≅π  ,344.02 ≅π  .377.03 ≅π                (63)                                                                                         
  
According to (3), the limit values of the system 
operation process transient probabilities )(tpb  at the 

operation states bz are given by  
 
   ,530.01 ≅p 109.02 ≅p , .361.03 ≅p                (64) 
 
Taking into account the efficiency of the considered 
port grain transportation system we distinguish the 
following three safety states of the systems and its 
components:   
state 2 – the state ensuring the largest efficiency of 
the system and its conveyors,   
state 1 – the state ensuring less efficiency of the  
system caused by throwing grain off the system 
conveyors,  
state 0 – the state involving failure of the system. 
We assume that the system safety structure and its 
subsystems and components safety depend on its 
changing in time operation states. Considering the 
assumptions and agreements of these sections, we 
assume that its subsystems ,υS  ,4.3,2,1=υ  are 
composed of three-state,  i.e. z = 3, components 

,)(υ
ijE  ,4,3,2,1=υ  having the conditional safety 

functions given by the vector  
 
   )()( )],([ b

ij tS ⋅υ = [1, )()( )]1,([ b
ij tS υ , )()( )]2,([ b

ij tS υ ],     

  
   ,3,2,1=b  
 
with the exponential co-ordinates  
 
   ],)]1([exp[)]1,([ )()()()( b

ij
b

ij tS υυ λ−=     

   ],)]2([exp[)]2,([ )()()()( b
ij

b
ij tS υυ λ−=  

 
different at various operation states bz , ,3,2,1=b  and 
with the intensities of departure from the safety state 
subsets },2,1{ },2{  respectively  
 
   )()( )]1([ b

ij
υλ , )()( )]2([ b

ij
υλ ,  .3,2,1=b  

     
The influence of the system operation states 
changing on the changes of the system safety 
structure and its components safety functions is as 
follows. Next will analyse the safety of the 
subsystem 4S  only. 

At the system operation state 1z , the subsystem 4S  
consists of three chain conveyors  forming series 
subsystems ( 3)1( =k ), each composed of a wheel 
driving the belt, a reversible driving wheel and 160, 
160 and 240 links respectively. Thus, two conveyors 
have 162 components and the remaining one has 242 
components ( ,162)1(

1 =l 242,162 )1(
3

)1(
2 == ll ) what 

means that the subsystem is a non-homogeneous 
non-regular three-state series-parallel system.  with 
the exponential safety functions. In two series 
subsystems of the subsystem 4S  there are 
respectively:  
- 2 two driving wheels marked by  ,)4(

ijE  

,2,1=i ,2,1=j  with a safety function co-ordinates     
 

   )1()4( )]1,([ tSij = exp[-0.005t],  

   
   )1()4( )]2,([ tSij = exp[-0.006t], t ≥ 0, ,2,1=i ;2,1=j  

 
- 160 links marked by  ,)4(

ijE  ,2,1=i ,162,...,4,3=j  

with a safety function co-ordinates    
  
   )1()4( )]1,([ tSij = exp[-0.012t],  

 
   )1()4( )]2,([ tSij = exp[-0.014t],   t ≥ 0, 

 
   ,2,1=i .162,...,4,3=j  
 
In the third series subsystems of the subsystem 4S  
there are respectively:  
- 2 two driving wheels marked by  ,)4(

ijE  

,3=i ,2,1=j  with a safety function co-ordinates     
 

   )1()4( )]1,([ tSij = exp[-0.022t],  

 
   )1()4( )]2,([ tSij = exp[-0.024t], t ≥ 0, ,3=i ;2,1=j  
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- 240 links marked by  ,)4(
ijE  ,3=i ,242,...,4,3=j  

with a safety function co-ordinates     
    
   )1()4( )]1,([ tSij = exp[-0.034t],  

 
   )1()4( )]2,([ tSij = exp[-0.040t], t ≥ 0,  

 
   ,3=i .242,...,4,3=j  
 
Thus, at the operation state 1z , the subsystem 4S  is 
a three-state series-parallel system with its structure 
shape parameters ,3)1( =k  ,162)1(

1 =l  ,162)1(
2 =l  

,242)1(
3 =l  and according to the formulae appearing 

after Definition 3.11 in [8] and (30)-(31) its 
conditional safety function is given by 
 
   )1()4( )],([ ⋅tS ,1[= ,)]1,([ )1()4( tS ],)]2,([ )1()4( tS       (65) 

   t ≥ 0,                                                                                                       
 
where 
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   ]504.4exp[]900.11exp[2]252.2exp[2 ttt −−−−−=  
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The expected values of the subsystem 4S conditional 
lifetimes in the safety state subsets }2,1{, }2{  at the 

operation state 1z , calculated from the results given 
by (66)-(67), according to (11)-(12), respectively are:  
 
   )1(1µ 785.0≅ )2(1µ 672.0≅ month.                  (68) 

 
At the system operation state 2z , the subsystem 4S , 
consists of three identical chain conveyors  forming 
series subsystems ( 2)2( =k ), each composed of a 
wheel driving the belt, a reversible driving wheel and 
160 links ( ,162)2(

1 =l 162)2(
2 =l ) what means that 

the subsystem is a non-homogeneous regular three-
state series-parallel system  with the exponential 
safety functions. In the series subsystems of the 
subsystem 4S  there are respectively:  

- 2 two driving wheels marked by  ,)4(
ijE  

,2,1=i ,2,1=j  with a safety function co-ordinates     
 

   )2()4( )]1,([ tSij = exp[-0.002t],  

 
   )2()4( )]2,([ tSij = exp[-0.004t], t ≥ 0, ,2,1=i ;2,1=j  

 
- 160 links marked by  ,)4(

ijE  ,2,1=i ,162,...,4,3=j  

with a safety function co-ordinates     
 
   )2()4( )]1,([ tSij = exp[-0.008t],  

 
   )2()4( )]2,([ tSij = exp[-0.010t], t ≥ 0, 

 
   ,2,1=i .162,...,4,3=j  
 
Thus, at the operation state 2z , the subsystem 4S  is 
a three-state series-parallel system with its structure 
shape parameters ,2)2( =k  ,162)2(

1 =l  ,162)2(
2 =l  

and according to the formulae appearing after 
Definition 3.11 in [8] and (30)-(31) its conditional 
safety function is given by 
 
   )2()4( )],([ ⋅tS ,1[= ,)]1,([ )2()4( tS ],)]2,([ )2()4( tS      (69) 

 
   t ≥ 0,                                                                                                     
 
where 
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   )2()4( )]1,([ tS = )1,(162,162;2 tS   

 

   ∏∏ −−=
==

162

1

)2()4(
2

1
])]1,([1[1

j
ij

i
tS  

 

    = ∏ ∑−−−
= =

2

1

162

1

)2()4( ]])]1([exp[1[1
i j

ij tλ  

                             
   = 2]]160008.02002.0[exp[1[1 t⋅+⋅−−−  

 
    = 2]]284.1exp[1[1 t−−−  

 
   ],5680.2exp[]284.1exp[2 tt −−−=                     (70) 
 
   )2()4( )]2,([ tS = )2,(162,162;2 tS   

 

   ∏∏ −−=
==

162

1

)2()4(
2

1
])]2,([1[1

j
ij

i
tS  

 

   = ∏ ∑−−−
= =

2

1

162

1

)2()4( ]])]2([exp[1[1
i j

ij tλ  

                          
    = 2]]160010.02004.0[exp[1[1 t⋅+⋅−−−  

 
   = 2]]608.1exp[1[1 t−−−  

 
   ].2160.3exp[]608.1exp[2 tt −−−=                     (71) 
 
The expected values of the subsystem 4S conditional 
lifetimes in the safety state subsets }2,1{, }2{  at the 

operation state 2z , calculated from the results given 
by (70)-(71), according to (11)-(12), respectively are:  
 
   )1(2µ 168.1≅ )2(2µ 933.0≅ month.                  (72) 

 
At the system operational state 3z , The subsystem 

4S , consists of one chain conveyor forming a series 

system ( 1)3( =k ), composed of a wheel driving the 
belt, a reversible driving wheel and 160 links 
( 162)3(

1 =l ) with the exponential safety functions. 
In the series system of the subsystem 4S  there are 
respectively:  
- 2 two driving wheels marked by  ,)4(

ijE  

,1=i ,2,1=j  with a safety function co-ordinates     
 

   )3()4( )]1,([ tSij = exp[-0.001t],  

 
   )3()4( )]2,([ tSij = exp[-0.003t], t ≥ 0, ,1=i ;2,1=j  

- 160 links marked by  ,)4(
ijE  ,1=i ,162,...,4,3=j  

with a safety function co-ordinates     
 
   )3()4( )]1,([ tSij = exp[-0.007t],  

 
   )3()4( )]2,([ tSij = exp[-0.009t], t ≥ 0,  

 
   ,1=i .162,...,4,3=j  
 
Thus, at the operation state 3z , the subsystem 4S  is 
a three-state series-parallel system (a series system) 
with its structure shape parameters ,1)3( =k  

,162)3(
1 =l  and according to the formulae appearing 

after Definition 3.11 in [8] and (30)-(31) its 
conditional safety function is given by 
 
   )3()4( )],([ ⋅tS ,1[= ,)]1,([ )3()4( tS ],)]2,([ )3()4( tS      (73) 
 
   t ≥ 0,   
                                                                                                    
where 
 

    )3()4( )]1,([ tS = )1,(162;1 tS  ∏∏ −−=
==

162

1

)3()4(
1

1
])]1,([1[1

j
ij

i
tS  

 

   ∏=
=

162

1

)3()4(
1 )]1,([

j
j tS = ∑−

=

162

1

)3()3(
1 ])]1([exp[

j
j tλ  

 
   = ]]160007.02001.0[exp[ t⋅+⋅−  
 
   = ]122.1exp[ t−                (74)                              
  
   )3()4( )]2,([ tS = )2,(162;1 tS  

 

   ∏∏ −−=
==

162

1

)3()4(
1

1
])]2,([1[1

j
ij

i
tS  

 

   ∏=
=

162

1

)3()4(
1 )]2,([

j
j tS = ∑−

=

162

1

)3()3(
1 ])]2([exp[

j
j tλ  

 
   = ]]160009.02003.0[exp[ t⋅+⋅−  
 
    = ]446.1exp[ t−                                                   (75)   
                                                                                                                         
The expected values of the subsystem 4S conditional 

lifetimes in the safety state subsets }2,1{, }2{  at the 

operation state 3z , calculated from the results given 
by (74)-(75), according to (11)-(12), respectively are:  
 
   )1(3µ 891.0≅ )2(3µ 692.0≅ month.                  (76) 
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In the case when the subsystem 4S  operation time is 
large enough its unconditional four-state safety 
function is given by the vector    
 
   ),((4) ⋅tS ),1,(,1[ (4) tS= )]2,((4) tS ,0≥t               (77) 
 
where according to (9) and considering the system 
operation process transient probabilities at the 
operation states determined by (64), the vector co-
ordinates are given respectively by   
 
   )1,((4) tS )1((4)

1 )]1,([ tp S= )2((4)
2 )]1,([ tp S+  

 
   )3((4)

3 )]1,([ tp S+                      
                    
   )1((4) )]1,([530.0 tS⋅= )2((4) )]1,([109.0 tS⋅+  
 
   )3((4) )]1,([361.0 tS⋅+  for t ≥ 0,                           (78)

                                                           
   )2,((4) tS )1((4)

1 )]2,([ tp S= )2((4)
2 )]2,([ tp S+  

 
   )3((4)

3 )]2,([ tp S+                      
                    
   )1((4) )]2,([530.0 tS⋅= )2((4) )]2,([109.0 tS⋅+  
 
   )3((4) )]2,([361.0 tS⋅+  for t ≥ 0,                           (79) 
 
where the safety functions 

,)]1,([ )1((4) tS ,)]1,([ )2((4) tS )3((4) )]1,([ tS are given by 

(66), (70), (74) and ,)]2,([ )1((4) tS  ,)]2,([ )2((4) tS  
)3((4) )]2,([ tS are given by (67), (71), (75).  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The graph of the subsystem 4S  safety 

function ),((4) ⋅tS coordinates. 
 
The expected value of the subsystem 4S  
unconditional lifetime in the safety state subset },2,1{  
calculated according to (10) from the results given by 
(68), (72), (76) and (64), is  

   )1(µ )1(11 µp= )1(22 µp+ )1(33µp+   
                   
   +⋅= 785.0530.0 +⋅ 168.1109.0 891.0361.0 ⋅  
 
   ≅ 0.865 month.                                                   (80)  
 
The expected value of the system unconditional 
lifetime in the safety state subset },2{  calculated 
according to (10) from the results given by (68), 
(72), (76) and (64), is  
 
   )2(µ )2(11 µp= )2(22 µp+ )2(33µp+   
                    
   +⋅= 672.0530.0 +⋅ 933.0109.0 692.0361.0 ⋅  
 
   ≅ 0.708 month.                                                   (81)  
                
Further, considering (80) and (81) and applying (13), 
the mean values of the unconditional lifetimes in the 
particular safety states 1, 2, respectively are:    
 
   157.0)2()1()1( =−= µµµ  month,  
 
   708.0)2()2( == µµ  month.                              (82) 
 
Since the critical safety state is r = 1, then the 
subsystem 4S  risk function, according to (14) and 
(64), is given by  
 
    r(t) )1,(1 (4) tS−=   
 
   )1((4) )]1,([530.0[1 tS⋅−= )2((4) )]1,([109.0 tS⋅+  

   ])]1,([361.0 )3((4) tS⋅+ for t ≥ 0,                          (83) 
 
where the safety functions ,)]1,([ )1((4) tS  

,)]1,([ )2((4) tS )3((4) )]1,([ tS are given by (66), (70), 
(74). 

Figure3. The graph of the subsystem 4S  risk 
function )(tr  

S(t,1) 
S(t,2) 
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Hence, by (15), the moment when the system risk 
function exceeds a permitted level, for instance δ  = 
0.05, is  
 
   τ = r−1(δ) 102.0≅                                             (84)                                                                                                                                                   
                                                                                                           
6. Conclusions 

The integrated general model of complex systems’ 
safety, linking their safety models and their operation 
processes models and considering variable at 
different operation states their safety structures and 
their components safety parameters is constructed. 
The material given in this chapter delivers the 
procedures and algorithms that allow to find the main 
an practically important safety characteristics of the 
complex technical systems at the variable operation 
condition. Next the results are applied to the safety 
evaluation of the one subsystem of the port grain 
transportation system. The predicted safety 
characteristics of the exemplary system operating at 
the variable conditions are different from those 
determined for this system operating at constant 
conditions. This fact justifies the sensibility of 
considering real systems at the variable operation 
conditions that is appearing out in a natural way from 
practice. This approach, upon the good accuracy of 
the systems’ operation processes and the systems’ 
components safety parameters identification, makes 
their safety prediction more precise.  
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