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DIFFERENTIAL EQUATION IN DESCRIPTION OF TRANSIENT S TATE IN 
THE RLC CIRCUITS AT CONSTANT VOLTAGE EXCITATION - 

WITH APPLICATION OF MATHEMATICA PROGRAM 
 

Abstract 
 

Introduction and aim:  Some description and simulation of the transient in the RLC circuit have 
been presented in this paper. Also has been shown the application of the Laplace transform to 
solve the differential equation.  
Material and methods: By using the Laplace transformation to the option of the transition from 
linear differential equations of the second order with constant coefficients to the algebraic 
equations. In numerical analysis, a reversed Laplace transform was applied by using the 
Mathematica program. 
Results: It has been obtained the same curve shape of the transient current at the determination by 
the second-order differential equation (classical solution) and the different-integral equation by 
using the inverse Laplace transform. 
Conclusion: By applying both the Laplace transform method and the analytical method, the same 
transient currents are obtained as a function of time.  

Keywords: Circuits, transient states, differential equations, Laplace transform, numerical 
simulation, Mathematica. 
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RÓWNANIE RÓŻNICZKOWE W OPISIE STANU NIEUSTALONEGO 
W OBWODACH RLC PRZY WYMUSZENIU NAPIĘCIEM STAŁYM - 

Z ZASTOSOWANIEM PROGRAMU MATHEMATICA  
 

Streszczenie 
 

Wstęp i cel: W pracy przedstawiono opis i symulacje stanu nieustalonego w obwodzie elektrycz-
nym RLC. Pokazano zastosowanie przekształcenia Laplace’a do rozwiązywania równania róż-
niczkowego.  
Materiał i metody: W wyniku zastosowania przekształceń Laplace’a  wskazano na możliwość 
przejścia od równań różniczkowych liniowych drugiego rzędu o stałych współczynnikach do rów-
nań algebraicznych. W analizie numerycznej zastosowano odwrtoną transformatę Laplace’a wy-
korzystując program Mathematica. 
Wyniki: Otrzymano jednakowy kształt przebiegu krzywej prądu nieustalonego przy wyznaczaniu 
równaniem różniczkowym drugiego rzędu (rozwiązanie klasyczne) i równaniem różniczkowo-
całkowym z wykorzystaniem przekształcenia odwrotnego Laplace’a. 
Wniosek: Stosując zarówno metodę przekształceń Laplace’a i metodę analityczną otrzymuje się 
jednakowe przebiegi prądu nieustalonego w funkcji czasu. 

Słowa kluczowe: Obwody elektryczne, stany nieustalone, równania różniczkowe, przekształcenie 
Laplace’a, symulacja numeryczna, Mathematica. 
(Otrzymano: 01.10.2017; Zrecenzowano: 15.10.2017; Zaakceptowano: 30.10.2017) 
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1. Transients in RLC circuits 
 

A transient is a transient between two pre-set circuit states due to structure change or 
change in circuit parameters. The condition of the circuit is described by means of differential 
equations. A transient is a transient between two pre-set circuit states due to structure change 
or change in circuit parameters. The condition of the circuit is described by means of differen-
tial equations. For a linear, stationary circuit with clustered parameters, these are ordinary 
differential heterogeneous linear equations with constant coefficients [2]-[7].  

With regard to linear electric circuits, the initial conditions imply from the commutation 
conditions1, which in turn implies demands that the energy change in a given element of the 
system does not take place took place by the leaps. For each coil (linear and unconjugated 
with another) the current continuity condition is met, and for each capacitor the voltage 
continuity condition is met, in other words, these values can never be change by the leaps.  

The solution of the differential equation is conveniently presented in the form of a sum of 
two components: transient (free) and fixed (forced). From the mathematical point of view, 
these components correspond to a general integral of the homogeneous equation and a 
particular integral of the heterogeneous equation [2]-[7].  

The form of the fixed component depends both on the design and parameters of the circuit 
as well as on the forcing. In turn, the form of the transition component does not depend on the 
type of force, but only on the circuit’s construction and its parameters. These components are 
determined from the initial conditions. It should be added that in real circuits (with losses), 
the transient component disappears after a certain time depending on the design and 
parameters of the circuit [2]-[7]. 
 
2. Theoretical analysis of the serial switching RLC of the circuit for constant voltage 
 

    Figure 1 presents the simulation of switching the RLC circuit to constant voltage E. In the 
circuit at time t=0, the circuit breaker W is closed. The current waveform should be 
determined. 

 

Fig. 1. Substitute circuit of the RLC serial circuit (transient state i = 0 for t = 0) 
 Source: Elaboration of the Authors 

 

According to Kirchhoff's second law, we get dependence [2]-[7]: 

.E)t(u)t(u)t(u CRL =++  (1) 

Substituting for the equation (1) voltage drops uL(t), uR(t), uC(t) define by the formulas: 

,
dt

)t(di
L)t(uR =  (2) 

                                                 
1 That is, switching conditions. 
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),t(iR)t(uR ⋅=  (3) 

∫ ττ⋅+=
t

0
CC d)(i

C

1
)0(u)t(u  (4) 

we get the following differential-integral equation: 

.Ed)(i
C

1
)0(u)t(iR

dt

)t(di
L

t

0
C =ττ++⋅+ ∫  (5) 

The current i(t) at time t=0 equals zero. The first derivative of the function i =i (t) at time 
t=0 equals E / L. Therefore, the following initial conditions are accepted 

i(t = 0) = 0, (6) 

.
L

E

)0t(dt

di =
=

 (7) 

and at the same time 

Cu (t = 0) = 0. (8) 

Differentiating the equation (5) with respect to the variable t, we obtain a second order 
differential equation with constant coefficients, which has the following form: 

.0)t(i
C

1

dt

)t(di
R

dt

)t(id
L

2

2

=+⋅+  (9) 

Equation (9) describes the phenomenon of discharging capacitor with capacity C through 
the circuit with resistance R and the coefficient of self-induction L, where C, R and L are 
assumed to be constant. An unknown function is the voltage i=i(t) between the covers of the 
capacitor. 

For the equation (9) we assume that the particular integrals have the form: 

ti(t) = e .λ
 (10) 

Then the first and second derivative of the function (10) with respect to the variable t have 
the form: 

tdi
= e ,

dt
λλ  (11) 

2
2 t

2

d i
= e .

dt
λλ  (12) 

After substituting (10)-(12) into equation (9) and ordering, the characteristic equation of 
the differential equation (9) has the following form: 

.0
LC

1

L

R2 =+λ+λ  (13) 

The square root of discriminant of the characteristic equation (13) is defined by the formula: 

2

2

R 1
∆ = 4

L LC
.−  (14) 
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• Case 1. Aperiodic case. 

  Two different real roots of the equation (13). 

The characteristic equation (13) has two different real roots when:  

2
2

2

R 1 L
4 > 0 R 4 0.

L LC C
− ⇔ − >  (15) 

Then these roots have the following form: 

2

1

R 1 R 1
4

2L 2 L LC
, λ = − − − 

 
 (16) 

2

2

R 1 R 1
4

2L 2 L LC
. λ = − + − 

 
 (17) 

Therefore, we predict the particular integrals of the equation (9) in the following form: 

1λ t
1i (t) = e , (18) 

2λ t
2i (t) = e . (19) 

The general integral of equation (9) has the following form: 

1 2λ t λ t
1 1 2 2 1 2i(t) A i (t) + A i (t) = A e + A e ,≡  (20) 

where A1, A2 ∈ ℜ. 

In turn, by differentiating the equation (20) with respect to the variable t, we obtain: 

.eAeA
dt

)t(di t
22

t
11

21 λλ λ+λ=  (21) 

The integration constants A1 and A2, considering the conditions (6) and (7) in equations 
(20) and (21), are determined from the system: 








=λ+λ=
=

=+=

.
L

E
AA

)0t(dt

di
0AA)0(i

2211

21

 (22) 

The solution of the system (22) has the form: 










λ−λ
+=

λ−λ
−=

.
L

E

)(

1
A

L

E

)(

1
A

12
2

12
1

 (23) 

By inserting the received integration constants defined by formulas (23), to the general 
solution (21) the particular integral of the equation (9) under the initial conditions (6) and (7) 
takes the form:  

1 2λ t λ ti(t) = e + e ,
1 1

( ) ( )
−

λ − λ λ − λ2 1 2 1

E E

L L
 (24) 

2 1λ t λ t

2 1

1 E
i(t) e e .

(λ λ ) L
( )= −

−
 (25) 
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Finally, after entering formulas (16) and (17) to solution (25), we get: 

2 2

2 22

E R 1 R 1 R 1 R 1
i(t) exp 4 t exp 4 t .

2L 2 L LC 2L 2 L LCR 1
L

2L LC

        
   = − + − − − − −                    − 

 

 
(26) 

or after transforming: 

2 2

2 22

R
E exp t

2L 1 R 1 1 R 1
i(t) exp 4 t exp 4 t .

2 L LC 2 L LCR 1
L

2L LC

  ⋅ −                 = − − − −                    − 
 

 
(27) 

Using the hyperbolic sine definition 2 the general solution (27) receives the form: 

2

22

R
2 E exp t

1 R 12L
i(t) i1(t) sinh 4 t

2 L LCR 1
L

2L LC

,

 ⋅ ⋅ − ⋅       ≡ = ⋅ − ⋅ 
      − 

 

 (28) 

where 
2

R 1
> 0.

2L LC
  − 
 

 

 
• Case 2. Critical aperiodic case. 

  One double real root of the equation (13). 

A characteristic equation (13) has one double real root when:  

2
2

2

R 1 L
4 = 0 R 4 0.

L LC C
− ⇔ − =  (29) 

It has the following form: 

0 1 2

R
.

2L
λ = λ = λ = −  (30) 

Therefore, we anticipate the particular integral of the equation (9) in the form: 

0λ t
1i (t) = e , (31) 

0λ t
2i (t) = t e .⋅  (32) 

The general integral of the equation (9) is given by the formula: 

0 0λ t λ t
1 1 2 2 1 2i(t) A i (t) + A i (t) = A e + A t e ,≡ ⋅  (33) 

where A1, A2 ∈ ℜ. By differentiating the equation (33) with respect to variable t, we obtain: 

0 0 0

0 0

λ t λ t λ t
1 0 2 2 0

λ t λ t
1 0 0 2

di(t)
= A λ e + A e + A λ te =

dt

= A λ e + (1+λ t)A e .

 (34) 

                                                 
2 Hyperbolic sine is defined as follows: sinh(t) ≡ 0,5[exp(t) − exp(−t)]. 
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Constants A1 and A2, taking into account the conditions (6)-(7) in equations (33)-(34), we 
get from the system: 








=+λ=
=

==

.
L

E
AA

)0t(dt

di
0A)0(i

201

1

 (35) 

Thus, the system (35) has solutions: 







=

=

.
L

E
A

0A

2

1
 (36) 

By inserting the integration constants A1 and A2, defined by formulas (36), to the general 
solution (33), the particular integral of the equation (9) under the initial conditions (6) and (7) 
receives the following form: 

).texp(t
L

E
)t(i 0λ⋅=  (37) 

After introducing formula (30) to (37), the particular integral of the equation (9) has the 
following form: 

E R
i(t) i2(t) = t exp t

L 2L
,

  ≡ ⋅ ⋅ −  
  

 (38) 

for 2 L
R 4 = 0.

C
−  

 
• Case 3. Oscillatory case −  (Sinusoidal vibrations suppressed exponentially). 

  Two different complex conjugated roots of the equation (13). 

The characteristic equation (13) has two different complex conjugated roots when: 

2 22

2

R 1 1 R 1 R
4 < 0 ( 4) < 0 0.

L LC LC 2L LC 2L

    − ⇔ − − ⇔ − >    
     

 (39) 

They have the following form: 

2 2

1

R 4 1 R R 1 R
+ + j ,

2L 2 LC 2L 2L LC 2L

−    λ = − ⋅ − = − ⋅ −   
   

 (40) 

2 2

2

R 4 1 R R 1 R
j .

2L 2 LC 2L 2L LC 2L

−    λ = − − ⋅ − = − − ⋅ −   
   

 (41) 

Considering the formula (40) the particular integrals of the equation (9) we anticipate in 
the following form: 

2

1

R 1 R
i (t) = exp t cos t ,

2L LC 2L

      − ⋅ ⋅ ⋅ −            

 (42) 
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2

2

R 1 R
i (t) = exp t sin t

2L LC 2L
.

      − ⋅ ⋅ ⋅ −            

 (43) 

The general integral of equation (9) has the following form: 

1 1 2 2

2 2

1 2

i(t) i3(t) = A i (t) + A i (t) =

R 1 R R 1 R
= A exp t cos t + A exp t sin t

2L LC 2L 2L LC 2L
,

≡

                − ⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ −                          

 
(44) 

2 2

1 2

R 1 R 1 R
i(t) i3(t) = exp t A cos t + A sin t

2L LC 2L LC 2L
.

              ≡ − ⋅ ⋅ ⋅ − ⋅ −                      

 (45) 

where A1, A2 ∈ ℜ. 

In turn, by differentiating the equation (45) with respect to variable t, we obtain: 

2 2

1 2

2 2

2 1

di(t) R R 1 R 1 R
= exp t A cos t + A sin t +

dt 2L 2L LC 2L LC 2L

1 R R 1 R 1 R
+ exp t A cos t A sin t

LC 2L 2L LC 2L LC 2L

                − − ⋅ ⋅ ⋅ − ⋅ −                          

            − − ⋅ ⋅ ⋅ − − ⋅ −                    

2

.
        

 

 

(46) 

Constants A1 and A2, taking into account the conditions (6) and (7) in equations (45) and 
(46), we determine from the system: 









=






−+






−=
=

==

.
L

E

L2

R

LC

1
A

L2

R
A

)0t(dt

di

0A)0(i
2

21

1

 (47) 

The system (47) has the solution: 




















−

=

=

.
L

E

L2
R

LC
1

1
A

0A

2
2

1

 (48) 

By inserting the integration constants A1 and A2, defined by formulas (48), to the general 
solution (45), the particular integral of the equation (9) under the initial conditions (6) and (7) 
has the following form:  

2

2

R
E exp t

1 R2L
(t) i3(t) = sin t ,

LC 2L1 R
L

LC 2L

i

 ⋅ − ⋅       ≡ ⋅ ⋅ −       ⋅ −  
 

 
(49) 

2 2
R 1 1 R

< 0 > 0.
2L LC LC 2L

   − ⇔ −   
   

 (50) 
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3. Laplace transformation 

3.1. Determination of Laplace transformation 

Lapalace transformation 

)s(Fdt)t(fe)}t(f{
0

st == ∫
∞

−L  (51) 

assigns the function f(t) of the real variable t, called the original, to some other function F(s) 
of the complex variable s, called its image [2]-[7]. 

It is assumed that the original f (t) on its domain t ≥ 0, it is a function of smooth pieces (i.e. 
regular), which for t→+∞ increasing no faster than eαt, where α>0 [3]. Recall that the 
function is regular in a certain area if it is differentiable at each point of the domain. 

Laplace transformation is a transformation of a set of functions for which Laplace integral 
is convergent in a set of complex functions of a complex variable. In contrast, Laplace 
transform is only an image of a certain function f (t) by Laplace transform. 
 
3.2. Selected properties of the Laplace transform 
 
Property 1. (Homogeneity) 

R.∈λ⋅λ=⋅λ )},t(f{)}t(f{ LL  (52) 

Property 2. (Additivity) 

)}.t(f{)}t(f{)}t(f)t(f{ 2121 LLL +=+  (53) 

Property 3. (Linearity) 

)}.t(f{)}t(f{)}t(f)t(f{ 22112211 LLL ⋅λ+⋅λ=λ+λ  (54) 

 
3.3. Reverse Laplace transform 
 
Knowing the transform of the function (its image), you can use the formula [2]-[7]: 





>
>

=
π

= ∫
∞+

∞−
0tdla0

0tdlaf(t)
dsF(s)e

j2

1
{F(s)}

jc

jc

st1-L  (55) 

and set the function itself (original). 
The integration path in this case is a straight line parallel to the imaginary axis with the 

equation: 

c)sRe( =  (56) 

where Re(s) = c > α.  

If t = 0, then the function has a jump. 

However, when ,0)t(flim
t

≠
+∞→

 then integral takes the average value ).0(f
2

1 +  
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3.4. Laplace transform and differential equations 
 

Equation (5) is transformed into an equation in the Laplace s domain 3: 

{ } { }.1Ed)(i
C

1
)t(iR

dt

di
L

t

0

LLLL ⋅=












ττ⋅+⋅+






⋅ ∫  (57) 

In the equation (57), the following properties are introduced for the Laplace transform [2]-[7]: 

,)s(IsL
dt

di
L ⋅⋅=







⋅L  (58) 

{ } ,)s(IR)t(iR ⋅=⋅L  (59) 

,)s(I
s

1

C

1
d)(i

C

1 t

0

⋅⋅=












ττ⋅ ∫L  (60) 

{ } .)s(I
s

1
E1E ⋅⋅=⋅L  (61) 

After entering the relationship (58)-(61) in the equation (57) in the domain of Laplace we have: 

).s(I
s

E
)s(I

Cs

1
)s(IR)s(ILs ⋅=⋅

⋅
+⋅+⋅⋅  (62) 

From here we get: 

.

Cs
1

RLss

E
)s(I










⋅
++⋅⋅

=  
(63) 

Current in the time domain i(t) is equal to Laplace inverse transform I(s) [2]-[7]: 

.

Cs
1

RLss

E
)t(i 1




























⋅
++⋅⋅

= −L  (64) 

As a result of applying the Laplace transformations, we move from the differential-integral 
equation (5) to the algebraic equation (62).  

 
 

Fig. 2. Substitute circuit of the RLC serial circuit in Laplace field 
Source: Elaboration of the Authors 

                                                 
3 In this equation we accept uC(t) = 0. 



P.S. Frączak, A.A. Czajkowski 
 

  96 

4. Numerical analysis in the Mathematica program of the serial switching RLC of  
    the circuit for constant voltage 
 

4.1. Data for numerical analysis of the intensity function 

Name: Designation: SI unit: Conversions: 

Voltage E = 100 [E] = [V] 




=




=





− 211- s

1

AsVVsA

1

LC

1
 

Inductance L = 2⋅10-3 [L] = [H]  
[L] =[VsA -1] 




=











=




Ω=






s

1

VsA

VA

H2L

R
1-

-1

 

∆ > 0 R1=85 

∆ = 0 R2=20 10 Resistance 

∆ < 0 R3=4 

[R] = [Ω] 
[R] = [VA -1] 








=



















2

2

s

1

2L

R
 

Capacity C = 2⋅10-6 
[C] = [F] 
[C] = [AsV-1] 




=−






±−
s

1

LC

1

2L

R

L

R
2

 

Intensity i [i] = [A] ]A[
VsA

Vs

LC

1

2L

R

L2

E
1-

1
2

=






=





























−








−

 

Time t [t] = [s] ][
s

1
s

LC

1

2L

R
t

2

−=




 ⋅=−






⋅  

Source: Elaboration of the Authors 

Note that the accepted values: E=100 [V], L = 2⋅10-3 [H], C = 2⋅10-6 [F] and for: 

resistance 0 < R < 2010 current intensity is defined by the formula (28), 

resistance R = 2010 current intensity is defined by the formula (38), 

resistance 2010< R < +∞ current intensity is defined by the formula (49). 

Checking a discriminant of the characteristic equation (13) for given values: 

 E = 100 [V], L = 2⋅10-3 [H], C = 2⋅10-6 [F]  

Case 1:   

3
2 2
1 6

L 2 10
R 4 > 0 85 4 > 0, 7225 4000 > 0, 3225 > 0

C 2 10

−

−

⋅− ⇔ − −
⋅

 (65) 

Case 2:   

3
2 2
2 6

L 2 10
R 4 = 0 20 10 4 = 0, 4000 4000 = 0, 0 = 0

C 2 10
( )

−

−

⋅− ⇔ − −
⋅

 (66) 

Case 3:   

3
2 2
3 6

L 2 10
R 4 < 0 4 4 < 0, 16 4000 < 0, 3986 < 0

C 2 10

−

−

⋅− ⇔ − − −
⋅

 (67) 



Differential equation in description of transient state in the RLC circuits at constant voltage excitation… 
 

  97 

4.2. Mathematica algorithms for intensity formulae and graphs 
 
Mathematica - Program 1 Graph of the function (28), (Fig. 3) [1], [8] 
 

E1:=100; R1:=85; L1:=2*10^(-3); C1:=2*10^(-6) 
Plot[(2*E1*(Exp[(-R1*t)/(2*L1)])* 
Sinh[0.5*t*Sqrt[(R1/L1)^2-4/(L1*C1)]])/(L1*Sqrt[(R1/L1)^2-
4/(L1*C1)]),{t,0,0.0005},PlotRange→{0,1},GridLines→Automatic, 
PlotStyle→Thickness[0.005],AxesLabel→{"t","i1(t)"}] 
 
Mathematica - Program 2 Formula and graph of the function (28) according to Laplace's reverse transformation (64), (Fig. 4) [1] 
 

I1=InverseLaplaceTransform[100/(s*(s*L1+R1+(1/(s*C1)))),s,t] 
Plot[i1,{t,0,0.0005},PlotRange→{0,1.5},GridLines→Automatic, 
PlotStyle→{Thickness[0.005],Red},AxesLabel→{"t","i1(t)"}] 
 

129

)t]1291225021250exp[()t]1291225021250exp[(
20)(i1(t)

+−−−−⋅−=  (68) 

 
Mathematica - Program 3 Graph of the function (38), (Fig. 5) [1], [8] 
 

E2:=100; R2:=20*Sqrt[10]; L2:=2*10^(-3); C2:=2*10^(-6) 
Plot[(E2*t/L2)*Exp[((-1)*R2)/(2*L2)*t],{t,0,0.0005}, PlotRan-
ge→{0,1.4},GridLines→Automatic, Plot-
Style→Thickness[0.005],AxesLabel→{"t","i2(t)"}] 
 
Mathematica - Program 4 Formula and graph of the function (38) according to Laplace's reverse transformation (64), (Fig. 6) [1] 
 

i2=InverseLaplaceTransform[100/(s*(s*L2+R2+(1/(s*C2)))),s,t] 
Plot[i2,{t,0,0.0005},PlotRange→{0,1.5},GridLines→Automatic, 
PlotStyle→{Thickness[0.005],Red},AxesLabel→{"t","i2(t)"}] 
 

t)101000exp(t50000i2(t) ⋅−⋅⋅=  (69) 

 
Mathematica - Program 5 Graph of the function (49), (Fig. 7) [1], [8] 
 

E3:=100; R3:=4; L3:=2*10^(-3); C3:=2*10^(-6) 
Plot[(((E3*Exp[(-R3/(2*L3))*t])/(L3*Sqrt[(1/(L3*C3)-
(R3/(2*L3))^2)]))* 
(Sin[t*Sqrt[(1/(L3*C3)(R3/(2*L3))^2)]])),{t,0,0.004}, 
PlotRange→{3,3},GridLines→Automatic,PlotStyle→Thickness[0.005]
,AxesLabel→{"t","i3(t)"}] 
 
Mathematica - Program 6 Formula and graph of the function (49) according to Laplace's reverse transformation (64), (Fig. 8) 
 

i3=InverseLaplaceTransform[100/(s*(s*L3+R3+(1/(s*C3)))),s,t] 
Plot[i3,{t,0,0.004},PlotRange→{-3.5,3.5}, 
GridLines→Automatic,PlotStyle→{Thickness[0.005],Red}, 
AxesLabel→{"t","i3(t)"}] 
 

t)249sin(1000
249

t)1000exp(50
i3(t) ⋅⋅⋅−⋅=  (70) 

Source: Programs in Mathematica were elaborated by the Authors 
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4.3. Graphs in the Mathematica program of the intensity function 

Aperiodic case 

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
t

0.2

0.4

0.6

0.8

1.0

1.2
i1H tL

 

 
 
 
Fig. 3. Graph of the 
function i1(t) [A] obtained 
from the formula (28)                        
in program 1 and data:  
E = 100 [V]  
R = 85 [Ω] 
L = 2⋅10-3 [H] 
C = 2⋅10-6 [F] 
 
Source:  
Elaboration of the Authors 
 

Aperiodic case 

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
t
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0.6

0.8
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Fig. 4. Graph (68) of the 
function (28) obtained 
according to the inverse 
Laplace transform (64) 
and in program 2 with 
data:  
E = 100 [V] 
R = 85 [Ω]  
L = 2⋅10-3 [H] 
C = 2⋅10-6 [F] 
 
Source:  
Elaboration of the Authors 
 

Critical aperiodic case 
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Fig. 5. Graph of the 
function i2(t) [A] obtained 
from the formula (38) in 
program 3 and data:  
E = 100 [V],   

R = 20 10  [Ω],   
L = 2⋅10-3 [H],   
C = 2⋅10-6 [F] 
 
Source:  
Elaboration of the Authors 
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Fig 6. Graph (69) of the 
function (38) obtained 
according to the inverse 
Laplace transform (64) 
and in program 4 with 
data:  
E = 100 [V] 

R = 20 10  [Ω] 
 L = 2⋅10-3 [H]  
C = 2⋅10-6 [F] 
 
Source:  
Elaboration of the Authors 
 

Critical aperiodic case 

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
t
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Fig. 7. Graph of the 
function i3(t) [A] 
obtained from the 
formula (49) in program 
5 and data:  
E = 100 [V]  
R = 4 [Ω] 
L = 2⋅10-3 [H]  
C = 2⋅10-6 [F] 
 
Source:  
Elaboration of the Authors 
 

Oscillatory case (Sinusoidal vibrations suppressed exponentially) 

0.001 0.002 0.003 0.004
t
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Fig 8. Graph (70) of the 
function (49) obtained 
according to the inverse 
Laplace transform (64) 
in program 6 with data: 
E = 100 [V]  
R = 4 [Ω] 
L = 2⋅10-3 [H]   
C = 2⋅10-6 [F] 
 
Source:  
Elaboration of the Authors 
 

Oscillatory case (Sinusoidal vibrations suppressed exponentially) 
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5. Scheme of Laplace transformation method 
 

 The following diagram is presented to illustrate the used methods. 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 9. Scheme of  Laplace operator method 
Source: Elaboration of the Authors 

 

6. Conclusions 
 
• The transient state of the RLC serial circuit when constant voltage is applied is described 

by a differential-integral equation, from which is obtained a second order differential 
equation with constant coefficients. 

• The differential-integral equation is solved by means of Laplace transformations. 
However, a second order differential equation with constant coefficients is calculated 
using the analytical method. 

• Using both the Laplace transform method and the analytical method, the same transient 
currents are obtained as a function of time. 

• Using both the MathCAD numerical program and the Mathematica numerical program to 
create graphs of the intensity functions using Laplace transformations, the same transient 
currents are obtained as a function of time. 

• Laplace's transformation and inverse Laplace transformations are applicable to the 
solution of certain classes of integral or differential-integral equations. 
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