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DIFFERENTIAL EQUATION IN DESCRIPTION OF TRANSIENT S TATE IN
THE RLC CIRCUITS AT CONSTANT VOLTAGE EXCITATION -
WITH APPLICATION OF MATHEMATICA PROGRAM

Abstract

Introduction and aim: Some description and simulation of the transiarthe RLC circuit have
been presented in this paper. Also has been shioevapplication of the Laplace transform to
solve the differential equation.

Material and methods By using the Laplace transformation to the optdnhe transition from
linear differential equations of the second ordethwconstant coefficients to the algebraic
equations. In numerical analysis, a reversed Laplaansform was applied by using the
Mathematicgprogram.

Results: It has been obtained the same curve shape ofahsiént current at the determination by
the second-order differential equation (classicdliteon) and the different-integral equation by
using the inverse Laplace transform.

Conclusion By applying both the Laplace transform method #edanalytical method, the same
transient currents are obtained as a functiomu ti

Keywords: Circuits, transient states, differential equations, Laplac@ndform, numerical
simulation,Mathematica.
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ROWNANIE RQZNICZKOWE W OPISIE STANU NIEUSTALONEGO
W OBWODACH RLC PRZY WYMUSZENIU NAHJCIEM STALYM -
Z ZASTOSOWANIEM PROGRAMU MATHEMATICA

Streszczenie

Wstkep i cel: W pracy przedstawiono opis i symulacje stanu naoisego w obwodzie elektrycz-
nym RLC. Pokazano zastosowanie przeksztalceniaatepl do rozwjzywania réwnania ré
niczkowego.

Materiat i metody: W wyniku zastosowania przeksztatdeaplace’a wskazano na miwvosé
przegcia od rowna rézniczkowych liniowych drugiegogdu o statych wspotczynnikach do row-
nan algebraicznych. W analizie numerycznej zastosoveaivatory transformag Laplace’a wy-
korzystugc program Mathematica.

Wyniki: Otrzymano jednakowy ksztalt przebiegu krzyweglpmieustalonego przy wyznaczaniu
rownaniem réniczkowym drugiego ¢du (rozwizanie klasyczne) i réwnaniem zniczkowo-
catkowym z wykorzystaniem przeksztatcenia odwrothaglace’a.

Whiosek: Stosugc zarowno metadprzeksztatlceé Laplace’a i metod analityczmy otrzymuje si
jednakowe przebiegi pdu nieustalonego w funkcji czasu.

Stowa kluczoweObwody elektrycznestany nieustalone, rownaniaadiczkowe, przeksztatcenie
Laplace’a, symulacja numeryczna, Mathematica.

(Otrzymano: 01.10.2017; Zrecenzowano: 15.10.205k&k€eptowano: 30.10.2017)
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1. Transients inRLC circuits

A transient is a transient between two pre-setudirstates due to structure change or
change in circuit parameters. The condition ofdineuit is described by means of differential
equations. A transient is a transient between tiespt circuit states due to structure change
or change in circuit parameters. The conditiorhefdcircuit is described by means of differen-
tial equations. For a linear, stationary circuithwclustered parameters, these are ordinary
differential heterogeneous linear equations withstant coefficients [2]-[7].

With regard to linear electric circuits, the init@onditions imply from the commutation
conditions, which in turn implies demands that the energyngeain a given element of the
system does not take place took place by the ldagseach coil (linear and unconjugated
with another) the current continuity condition ietmand for each capacitor the voltage
continuity condition is met, in other words, thesdues can never be change by the leaps.

The solution of the differential equation is constly presented in the form of a sum of
two components: transient (free) and fixed (forcdedpm the mathematical point of view,
these components correspond to a general intedgréheo homogeneous equation and a
particular integral of the heterogeneous equat@pq].

The form of the fixed component depends both ord#sgn and parameters of the circuit
as well as on the forcing. In turn, the form of trensition component does not depend on the
type of force, but only on the circuit’s constractiand its parameters. These components are
determined from the initial conditions. It should Added that in real circuits (with losses),
the transient component disappears after a cettaie depending on the design and
parameters of the circuit [2]-[7].

2. Theoretical analysis of the serial switchingRLC of the circuit for constant voltage

Figure 1 presents the simulation of switchimg RLC circuit to constant voltage E. In the
circuit at time t=0, the circuit breaker W is cldseThe current waveform should be
determined.

W
i(t) R L
t=0

Fig. 1. Substitute circuit of theLC serial circuit (transienstatel = O for t = 0)
Source: Elaboration of the Authors

According to Kirchhoff's second law, we get deperwde[2]-[7]:
u () +ur(t) +uc(t) =E 1)
Substituting for the equation (1) voltage drop&)y us(t), uc(t) define by the formulas:

_, di(t)
ugr(t)= LT’ (2)

! That is, switching conditions.
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ug (t) = RO(Y), 3)
t

uc(t) =uc(0) +%Eji(r)dr (4)
0

we get the following differential-integral equation

t
d;(tt) PRI +uq (0) + éju(r)drz E (5)

0

The current i(t) at time t=0 equals zero. The fitstivative of the function i =i (t) at time
t=0 equals E / L. Therefore, the following init@nditions are accepted

i(t=0)=0, (6)
di E
dt(t=0) L ()
and at the same time
u.(t=0)=0. (8)

Differentiating the equation (5) with respect t@ thariable t, we obtain a second order
differential equation with constant coefficientdyieh has the following form:

AR LRE S .

Equation (9) describes the phenomenon of dischgrgapacitor with capacity C through
the circuit with resistance R and the coefficiehtself-induction L, where C, R and L are
assumed to be constant. An unknown function isvttege i=i(t) between the covers of the
capacitor.

For the equation (9) we assume that the particodagrals have the form:

i(t) = e, (10)

Then the first and second derivative of the func(ip0) with respect to the variable t have
the form:

= A",
dt (11)
2
a e, (12)
e

After substituting (10)-(12) into equation (9) aardering, the characteristic equation of
the differential equation (9) has the followingrfar

R 1
NM+IZA+—=0. 1
L LC (13)
The square root of discriminant of the charactieresuation (13) is defined by the formula:
JA = - 4i (14)
LC
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» Case 1Aperiodic case.
Two different real roots of the equation (13).
The characteristic equation (13) has two differeat roots when:

R? 1 L
F_4E>O = R2_4C_:>0 (15)

Then these roots have the following form:

/ 1 (16)
LC’
A, =- 1 17)
2L 2\/

Therefore, we predict the particular integrals & éguation (9) in the following form:
i,(t) = e, (18)
i(t) = €. (19)
The general integral of equation (9) has the folhgiform:
i =Ai+AL{)=Ae™+A g™, (20)
where A, A, O U.
In turn, by differentiating the equation (20) wittspect to the variable t, we obtain:
% =AM + AN M 21)

The integration constants;Aand A, considering the conditions (6) and (7) in equaio
(20) and (21), are determined from the system:

i(0)=A1+A2 =0

di E
— =AAFALN, =—.
dij(t=0) Tt T2

(22)

The solution of the system (22) has the form:
Al = —;
(A2 =Ay)
A2 =+ ;
M2-A) L

(23)

|I'I'II_|I'I'I

By inserting the received integration constantsngef by formulas (23), to the general
solution (21) the particular integral of the eqaat(9) under the initial conditions (6) and (7)
takes the form:

1 E, 1 E
Ot T (24)
. 1 E
0=yt ) (25)
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Finally, after entering formulas (16) and (17) tdusion (25), we get:
E exp —£+—1 E2—4—l t|—ex R —If— 4—1 26
RY 1 oL 2\1? e 2L 2\1? Ic (26)
) (ZJ “Lc

or after transforming:

et O B )

Using the hyperbolic sine definitidrthe general solution (27) receives the form:

ZEEEXL{—RD'[j 1 R 1
() =iL) = 2L ) || £ /R -4 L |, (28)
L\/(R 1 2\ 2 LC

2

2L] LC

2

Where5 ——1>O
2L LC

i(t) =

» Case 2Critical aperiodic case.
One double real root of the equation (13).
A characteristic equation (13) has one double naatl when:

R 1 L

F_A'E:O - R2_4E=0 (29)
It has the following form:
)\0:)\1:)\2:—2;7_. (30)
Therefore, we anticipate the particular integraihef equation (9) in the form:
i (t) =€, (31)
i(t) =t @™, (32)

The general integral of the equation (9) is givgrite formula:
i =Ai)+Aj{H=Ae™+A 1 E", (33)
where A, A, [0 . By differentiating the equation (33) with respexvariable t, we obtain:

% = ALELT +AE + ANt = (34)

= ALEY + (LA DA £

2 Hyperbolic sine is defined as follows: sintétd,5[exp(t)— expEt)].
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Constants Aand A, taking into account the conditions (6)-(7) in agons (33)-(34), we
get from the system:

i(0)=A,=0
dli() 1 - (35)

— =AMy +tA, =—.
dtj(t=0) O T2
Thus, the system (35) has solutions:

A, =0
{ e (36)

A, =—.
27

By inserting the integration constants &nd A, defined by formulas (36), to the general
solution (33), the particular integral of the egoiat(9) under the initial conditions (6) and (7)
receives the following form:

i(t) :%t@Xp()\ot)- (37)

After introducing formula (30) to (37), the partiauintegral of the equation (9) has the
following form:

i) =i2(t) = %[ﬂ @xp{(—gj t} | (38)

for R? —4L =0.
C

» Case 30Oscillatory case- (Sinusoidal vibrations suppressed exponentially
Two different complex conjugated roots of theatign (13).
The characteristic equation (13) has two diffemrhplex conjugated roots when:

2 2 2
R_2—4i<0 - (—4)—1—(—R) <0 = —1—(—Rj >0 (39)
L LC LC (2L LC (2L

They have the following form:

R \/_4 1 1 _R (40)
Lc 2L T2 e 2

\,=-R ﬁ (1)
c 2L 2L ‘e 2L

Considering the formula (40) the particular intégraf the equation (9) we anticipate in
the following form:

0= exp - R 1 (RY
|l(t)—{exp( 5L [tﬂ[bo{ T (ZLJJ (42)
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o= [on{-FaJo (2] ]

The general integral of equation (9) has the folhgform:
i) =i3() = Aj (O +A]f)=

e R e e
i(t)Eis(t):[exp(_z_iaﬂ%co{ (2] | onef %-[z—ﬂ- -

where A, A, 0O 0.
In turn, by differentiating the equation (45) wittspect to variable t, we obtain:

(oSl pmef 2] ) oo T
e G ol T o T )|

Constants Aand A, taking into account the conditions (6) and (7eq@uations (45) and
(46), we determine from the system:

(46)

i0=A;=0
. 2
ﬂ :Al(—5j+A2 i—(ij :E. (47)
dt|(t=0) 2L LC (2L L
The system (47) has the solution:
A;=0
_ 1 E
Az = 2L (48)

1_(Rj
LC (2L
By inserting the integration constants @nd A, defined by formulas (48), to the general

solution (45), the particular integral of the egoiat(9) under the initial conditions (6) and (7)
has the following form:

R
E[GXF{— j 2 49
i) =i3(t) = 2L Esin{t i—(ﬁn, )
. (RY Lc (2L
: Lc‘(zJ
(Ejz__lq, . _1_(_Rj2>0_ (50)
oL) L Lc (2L
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3. Laplace transformation
3.1. Determination of Laplace transformation
Lapalace transformation

L{f(t)}= Te_Stf (t)dt= F) (51)
0

assigns the function f(t) of the real variablealled the original, to some other function F(s)
of the complex variable s, called its image [2]-[7]

It is assumed that the original f (t) on its domi0, it is a function of smooth pieces (i.e.
regular), which for t +w increasing no faster tharf'ewhere a>0 [3]. Recall that the
function is regular in a certain area if it is diféntiable at each point of the domain.

Laplace transformation is a transformation of ac$dtinctions for which Laplace integral
is convergent in a set of complex functions of anplex variable. In contrast, Laplace
transform is only an image of a certain functidt) by Laplace transform.

3.2. Selected properties of the Laplace transform

Property 1(Homogeneity)

L{NEF(E)} =AIL{f (1)}, AOR. (52)

Property 2 (Additivity)
L{f1(t) +f o(1)} = L{f (1)} + L{T 2(1)}. (53)

Property 3(Linearity)
L{Af (1) +AF (1)} = A [I{F (1)} + Ao [I{ T (1)} (54)

3.3. Reverse Laplace transform

Knowing the transform of the function (its imaggdu can use the formula [2]-[7]:

_ 1 ot f(t) dlat >0
L YF(s)} =— [€e'F(s)ds= 55
Fen 2njc_jj: (s)ds {Odlat>0 (53)

and set the function itself (original).
The integration path in this case is a straighe lparallel to the imaginary axis with the
equation:

Re@) =c (56)
where Re(s) = c =.
If t = 0, then the function has a jump.

— +0o0

However, whenlim f(t) # Othen integral takes the average vaﬂzilb(0+).
t
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3.4.Laplace transform and differential equations

Equation (5) is transformed into an equation inlthplace s domaih

. t
Ltﬂ_{ﬂ}+REﬂ_{i(t)}+lEﬂ_ [i@dr=e0{g. (57)
dt C |5
In the equation (57), the following properties arieoduced for the Laplace transform [2]-[7]:
di
LOL<—¢=L50(@),
{ dt} S) (58)
RIL{i()}=ROGE), (59)
t
1DL{ji(r)olr}:iﬁm(s), (60)
C 0 Cs
E&@:E&D@. (61)
S

After entering the relationship (58)-(61) in theuation (57) in the domain of Laplace we have:

SILOE +ROE) +—— 06 =206, (62)

slC S
From here we get:
E
I(s) = .
63
s[ﬁs[lL +R +1j (63)
s[C

Current in the time domain i(t) is equal to Laplaweerse transform I(s) [2]-[7]:

it)y=L7? E . (64)

s[és[l]_ +R +1j
s[C

As a result of applying the Laplace transformatjams move from the differential-integral
equation (5) to the algebraic equation (62).

we
Al

Fig. 2. Substitute circuit of thHRLCserial circuit in Laplace field
Source: Elaboration of the Authors

% In this equation we accepg(t) = 0.
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4. Numerical analysis in theMathematicaprogram of the serial switching RLC of

the circuit for constant voltage

4.1. Data for numerical analysis of the intensitydnction

Name: Designation: Sl unit: Conversions:
1 1
Voltage E =100 [E]=1V] _C} [VsA *Asv } [?}
e (=100 B [R][2) Al
S
A>0 Ry=85 (RV] T2
. R] =[Q - = =
Resistance | A = 0 RZZZO\/l_O {R} _ {V,]A'l] ZLJ ]_Lz}
A<0 Rs=4 )
| o [C] = [F] _R Ejz_i =H
Capacity C= 2106 [C] = [ASV_l] L * (ZL LC S
Intensity | [l =[A] [5_( (ZIU _Ll(:} :[v;/:l} Al
| ) RY 1 _[.2].
Time t [ =T[s] 20) e TS

Source: Elaboration of the Authors

Note that the accepted values: E=100 [V], LEZ[H], C = 210°[F] and for:
resistance 0 < R < 2010 current intensity is defined by the formula (28),

resistance R = 2(f10 current intensity is defined by the formula (38),

resistance 2010< R < 40 currentintensity is defined by the formula (49).

Checking a discriminant of the characteristic emquafl3) for given values:

E =100 [V], L = Z10°[H], C = 2110°[F]
Case 1:

-3
Re-4->0 - 83- £20 o
C 2010

Case 2:

7225 4000 >0, 3225:

—3
R§—4%:0 - (20/_0‘% =0, 4000 4000=0, 0=

Case 3
-3
R—4£<0 - f- 4&<0
C 2[10°

96

16- 4000 <0,—- 3986 <

(65)

(66)
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4.2. Mathematica algorithms for intensity formulaeand graphs

Mathematica - Program 21 Graph of the function (28), (Fig. 3) [1], [§]

E1l: =100; R1:=85; L1:=2*107(-3); Cl:=2*10"(-6)

Plot[ (2*E1*(Exp[ (-R1*t)/(2*L1)])*

Sinh[0.5*t*Sqrt[ (Rl/L1)"2-4/(L1*C1)]])/(L1*Sqgrt[ (R1/L1)"2-

4/ (L1*C1)]),{t, 0, 0. 0005}, Pl ot Range—~{ 0, 1}, G'i dLi nes—Aut onmati c,
Pl ot St yl e->Thi ckness[ 0. 005] , AxesLabel ->{"t","i 1(t)"}]

Mathematica - Program 2Formula and graph of the function (28) accordingidplace's reverse transformation (64), (Fig. 4) [1
| 1=l nver seLapl aceTransfornf 100/ (s*(s*L1+R1+(1/(s*Cl)))), s, t]
Plot[il,{t,0,0.0005}, Pl ot Range—~{0, 1. 5}, G'i dLi nes—Aut omati c,

Pl ot St yl e=~{ Thi ckness[ 0. 005] , Red}, AxesLabel -{"t","i 1(t)"}]

1(1) = (—20) (EXPLC21250-12250/120)] - exp[(-21250+12250/129) (68)
i V129

Mathematica - Program 3Graph of the function (38), (Fig. 5) [1], [8]

E2: =100; R2:=20*Sqrt[10]; L2:=2*10"(-3); C2:=2*10"(-6)

Plot[ (E2*t/L2) *Exp[ ((-1)*R2)/(2*L2)*t], {t, 0, 0. 0005}, PI ot Ran-
ge—>{0,1.4},GidLi nes-Automatic, Plot-

Styl e=Thi ckness[ 0. 005] , AxesLabel »{"t","i 2(t)"}]

Mathematica - Program 4Formula and graph of the function (38) accordingplace's reverse transformation (64), (Fig. §) [1
I 2=l nver seLapl aceTransforn{ 100/ (s*(s*L2+R2+(1/(s*C2)))), s, t]
Plot[i2,{t,0,0.0005}, Pl ot Range—~{ 0, 1. 5}, Gri dLi nes—Aut onati c,

Pl ot St yl e={ Thi ckness[ 0. 005], Red}, AxesLabel ->{"t","i 2(t)"}]

i2(t) = 5000001 [exp(1000V10 1) (69)

Mathematica - Program 5Graph of the function (49), (Fig. 7) [1], [8]

E3: =100; R3:=4; L3:=2*10"(-3); C3:=2*10"(-6)

Plot[ (((E3*Exp[(-R3/(2*L3))*t])/(L3*Sqrt[(1/(L3*C3) -
(R3/(2*L3))"2)]))*

(Sinft*Sgrt[(1/(L3*C3) (R3/(2*L3))"2)]])).{t,0,0.004},

Pl ot Range—{3, 3}, Gi dLi nes-Aut omati c, Pl ot St yl e=Thi ckness[ 0. 005]
, AxesLabel -{"t","i3(t)"}]

Mathematica - Program 6Formula and graph of the function (49) accordingdplace's reverse transformation (64), (Fig. 8)

I 3=l nver seLapl aceTransforn{ 100/ (s*(s*L3+R3+(1/(s*C3)))), s, t]
Plot[i3,{t,0,0.004}, Pl ot Range—~{- 3.5, 3. 5},

G i dLi nes—Autonati c, Pl ot Styl e=~{Thi ckness[ 0. 005], Red},
AxeslLabel -{"t","i3(t)"}]

50lexpF1000t)

N 249

Source: Programs in Mathematica were elaboratedhgyAuthors

i3(t) = [$in(100Q/24901) (70)
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4.3. Graphs in the Mathematica program of the intesity function

i1(t)

Aperiodic case

AN

.U/
0.4+

AN

N

.

.

~—

| —

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
Aperiodic case

i1(t)
12p
1C+
08f /\~
06/ / \
0.4/ \\
0.2 / \\
| —

L L L L L L L L L L L L L L L L L L L L t
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
Critical aperiodic case

i2(t)
12¢
10} /\\
0.8} / \
06 / \
0.4/ \~
o.zj \
\\

L L L L T—— \ t

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
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Fig. 3. Graph of the
function i1(t) [A] obtained
from the formula (28)

in program 1 and data:

E =100 [V]

R=85R]

L = 2110° [H]

C = 210° [F]

Source:
Elaboration of the Authors

Fig. 4. Graph (68) of the
function (28) obtained
according to the inverse
Laplace transform (64)
and in program 2 with
data:

E =100 [V]

R =85[]

L = 200° [H]

C = 210° [F]

Source:
Elaboration of the Authors

Fig. 5. Graph of the
function i2(t) [A] obtained
from the formula (38) in
program 3 and data:

E =100 [V],

R = 20710 [Q],
L = 2010° [H],
C = 210° [F]

Source:
Elaboration of the Authors
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Fig 6. Graph (69) of the
function (38) obtained
according to the inverse
Laplace transform (64)
and in program 4 with
data:

E =100 [V]

R = 2010 [Q]
L = 2110° [H]
C = 210° [F]

Source:
Elaboration of the Authors

Fig. 7. Graph of the
function i3(t) [A]
obtained from the
formula (49) in program
5 and data:

E =100 [V]

R=4[]

L = 2010° [H]

C = 210° [F]

Source:
Elaboration of the Authors

Fig 8. Graph (70) of the
function (49) obtained
according to the inverse
Laplace transform (64)
in program 6 with data:
E =100 [V]

R =4[]

L = 200° [H]

C = 210° [F]

Source:
Elaboration of the Authors

i2(t)
12

Critical aperiodic case

[N

\

.L/
0.4}
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|
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5. Scheme of Laplace transformation method

The following diagram is presented to illustrdte tised methods.

> . » Solution of
Problem Equation the equation T Result
|
T
L Laplace L* Laplace
transformation reverse transformation
I
Solution of Transformed R Solution of
L Laplace transformation equation "] the transformed equation

Fig. 9. Scheme of Laplace operator method
Source: Elaboration of the Authors

6. Conclusions

The transient state of the RLC serial circuit wigenstant voltage is applied is described
by a differential-integral equation, from which abtained a second order differential
equation with constant coefficients.

The differential-integral equation is solved by meaof Laplace transformations.
However, a second order differential equation witnstant coefficients is calculated
using the analytical method.

Using both the Laplace transform method and théyaoal method, the same transient
currents are obtained as a function of time.

Using both theviathCAD numerical program and thdathematicanumerical program to
create graphs of the intensity functions using aegltransformations, the same transient
currents are obtained as a function of time.

Laplace's transformation and inverse Laplace toansitions are applicable to the
solution of certain classes of integral or différalkintegral equations.
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