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Abstract —The paper presents the application of fractional calculus to describe the dynamics of selected pneumatic elementsand
systems. In the construction of mathematical models of the analysed dynamic systems, the Riemann-Liouville definition of
differintegral of non- integer order was used. For the analysed model, transfer function of integer and non-integer order was
determined. Functions describing characteristics in frequency domains were determined, whereas the characteristics of the
elements and systems were obtained by means of computer simulation. MATLAB programme were used for the simulation

research.
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INTRODUCTION

The paper presents the mathematical analysis of the
pressure chamber with inlet pipe and pneumatic cascade
[5], [6], [7], [8], [9], [10] and [11] described with the
differential calculus of non-integer orders (fractional
calculus) [1], [2], [3] and [14].

Differential equations of integer and non-integer order
were introduced and became the basis for deriving
equations describing time characteristics (pulse and step)
and frequency characteristics (logarithmic amplitude and
phase characteristics) for each tested pneumatic system.
Simulations of derived equations was performed using
MATLAB&Simulink software [10, [11] and [13], obtaining
frequency characteristics of the tested systems for integer
and non-integer orders.

I. MEMBRANE PRESSURE TRANSDUCER

Simulation tests of the membrane pressure transducer
were performed using a classical and fractional differential
calculus [8], [9], [10] and [11]. The tested transducer was
made of a pressure chamber and an inlet pipe, which
supplied a working medium (air). To determine how the
connection of the intake pipe to the transducer chamber
affected its dynamic properties, the acoustic system shown
schematically in figure 1 is considered.
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Fig. 1. Pressure chamber with inlet pipe: 5 b tube

dimensions, Po -input pressure (force ), P - pressure in
transducer chamber

The relationship that binds the output signal p(t)

(pressure inside the chamber) to the signal po(t) (pressure at
the open end) can be represented as:
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Constants occurring in equation (1) can be represented
as:
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where:

plkgm?] - density of gas;

n [kgmis?] - dynamic viscosity;

Cp [Ns?m] - pneumatic capacity (gas compressibility);
p (t) [Pa] - pressure in transducer chamber;

po (t) [Pa] - input pressure;

V [m?3] - transducer chamber volume;

Lp [m3N] - pneumatic induction (gas inertia);

Rp [Nsm™] - flow resistance;

¢ [ms?] - speed of sound in the gas;

r, | [m] - dimensions of the inlet pipe.

By specifying the pulsatance wo and damping ratio § as:
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equation (1) finally assumes the form:

2
d pz(t) +2¢w, dp(t) + coozp(t): coozpo ()
dt dt
@)
Equation (4) is a mathematical description of the
dynamics of the analyzed pneumatic system, using classical
differential calculus (of integer orders).The impulse response
of the analyzed pneumatic system is given by:

g(t) = %eiéwot sin w41 - &2t
vi-¢
(5)

The step response of the system is expressed by:

—0yét
h(t)=1- Wsm (a)m/l — &M+ (p) )
where:

1-¢°2

@ = arctg —é (7)

Given that the derivatives of integer orders in the
fractional calculus are a special case of fractional derivatives,
equation (4) can be written as:

2 2
0" DX p(1)+ 280, G D) p(1) + @y” plt) = @4 po (1)
(8)

where: V > 0 .

In order to determine the pressure in the transducer
chamber, the definition of Riemann - Liouville differintegral
of non-integer order was used, defined by a following
formula:

1 dr
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where:

QL —the order of integration within bounds (a,t)

of the function f(t) , k—]S a< k and:
- x-1
aeR", F(x):J.e 't dt _ gler's
0

gamma function
The Laplace transform for a fractional derivative defined
by Riemann - Liouville takes the form:

j-1
L tns ro]= s F ) =Y sH 2 Epet r(0)
k=0

(10)

j-1<a<jeN

where:

The practical application of the formula determining the
Laplace transform of a Riemann-Liouville fractional
derivative faces some difficulties related to the lack of
physical interpretation of the initial values of successive
derivatives of fractional orders. Assuming zero initial
conditions, the difficulties associated with their physical
interpretation will be eliminated.

Using the Laplace transform to equation (8), for zero
initial conditions, we obtain:

2 2
2 p(s) + 28045 p(s) + @, p(s) = ©o” py(s) (11)

Thus the transfer function of non-integer order of the
analyzed pneumatic system is obtained:

2
G(V)(S) = % (12)

2
5% +2Ewys" +

Transfer function denominator of non-integer order has

two complex roots as the system damping is 5 <1 .
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Il. FREQUENCY RESPONSE OF THE MEMBRANE
PRESSURE TRANSDUCER

In order to determine the relationships describing the
frequency response, the spectral transfer function of the
tested transducer was determined. Substituting:

s=jo= wej% =0 cos(”j+ jsin(”j (13)
2 2

to the formula (12), the spectral transfer function of the
transducer is obtained:

2
Wy
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2
@,

2 [cos(vz)+ jsin(vr)]+ 2bwy0" {cos[v%j + jsin[v%ﬂ + woz
(14b)

By making elementary transformations, the real and
imaginary part of the spectral transfer function was
calculated:

G (jo)=P" (0)+jO" (®)ys
where:

PV (w) =

2 2y 3 v vr 4
@y’ cos(v )+ 2Ewy 0" 005[7)+ Ion

' cos(vr )+ 26w,0" cos[‘%{] + {uﬂz} + {{uzv sin(vz )+ 260" 0, Si“[%ﬂ
(16a)

0V(w) =

020 sin(vr )+ 220, 0" sin[%j

0 cos(vr )+ 2Emy0” cus[%] + w{] + {w?" sin (v )+ 2£0,0" sin[%ﬂ
(16b)
Knowing the real and imaginary part of the spectral

transfer function of the transducer, one can determine the
equation describing the logarithmic amplitude step:

LY (w) = 20 log \/[P(”‘)(a;)]z o an

and the equation describing the logarithmic phase step:

waqz
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(18)

o* sin(vz)+ 2Ew,0" sin(%j

=—arctg,
%3
0% cos(vzr)+ 2Ewym” cos(Tj + 0y’

In order to verify the relationships describing logarithmic
steps of amplitude (17) and phase (18) of the tested
transducer, the pneumatic pressure transducer was
modeled in the MATLAB environment, described by means
of ordinary differential equation and differential equation
with derivatives of non-integer order. Describing the
transducer with the use of a differential equation of non-

integer orders, the parameter v=1 was assumed and
the obtained logarithmic amplitude and phase steps were
compared to the logarithmic amplitude and phase steps
obtained from the transducer description by means of the
ordinary differential equation.

The simulations assumed:

w, = 500[rad /s],

- damping ratio §=02

The transfer function of the pneumatic pressure
transducer, calculated from the ordinary differential
equation, has the form:

2
Gls)= P(S) _ )
(S) po(S) 52 +28wys +

- pulsatance

2 (19)

By performing the simulation of equation (19) which
presents the dynamics of the phenomena occurring in the
analyzed pneumatic system, in the MATLAB programming
environment, the frequency response presented in figure 2
was obtained:

Bade Diagram

Magritude (d8)

Phase (rad)

28 a 1 2 3
10 0 10 10

Frecuency (radis)
Fig. 2. Logarithmic frequency response of the
transducer described by the ordinary differential equation

When simulating equations (17) and (18) in the MATLAB

environment  which describe a pneumatic pressure
transmitter by means of a differential equation of non-
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integer order, assuming a coefficient V' = 1 for damping

£=038

, the response shown in figure 3 was obtained:

Magnitude [dB]
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Phase [rad]
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Frequency [rad/s]

Fig. 3. Logarithmic frequency response of a pneumatic

transducer described by means of a differential equation

with non-integer order for V = 1 (equation 17 and 18)

Logarithmic frequency response of amplitude and phase
presented by the simulation of ordinary differential equation
(figure 2), coincide with frequency response obtained by the
simulation of the equations describing logarithmic response
of amplitude (17) and phase (18), obtained from the
equation of the transducer described with the help of non-

integer orders (figure 5) for the parameter V = 1 .
In order to obtain a Bode plot, the equations (17) and
(18) were simulated by writing an appropriate program in
the MATLAB environment. Written in the MATLAB
environment, the program allows analyzing the transducer
for different orders of derivatives, with any step, because the
order was given as a parameter. The simulation results for
the selected values of parameter v are shown in figure 4 and
figure 5.
5 . .
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Fig. 4. Logarithmic amplitude response of a pneumatic
transducer described by means of differential equation
with fractional derivatives of non-integer orders in the

range (0.8-1.2)
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Fig. 5. Logarithmic phase response of a pneumatic
transducer described by means of differential equation
with fractional derivatives of non-integer orders in the
range (0.8-1.2)

The analysis of the responses shows that for the

parameter v<l , the logarithmic amplitude responses
(figure 4) are monotonically decreasing functions. For the

parameter v>1 , the logarithmic amplitude responses
have a maximum depending on the order of the differential.
The maximum is achieved with resonant frequency
rad

o

Increasing the order of derivative, the frequency
responses acquire the character of a second-order
oscillatory element, and while decreasing the order of the
derivative, the responses acquire the character of the first
order inertial element.

Decreasing the order of the derivative causes the
transducer to become more linear, which allows the scope
of work to be increased.

Increasing the parameter V above one results in
resonance, although it should not be visible in the response,
because the simulation was carried out for the damping

@, =110

¢=08 . The model then does not reflect the actual
layout.
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lll. MATHEMATICAL MODEL OF APNEUMATIC
CASCADE DESCRIBED WITH A FRACTIONAL
CALCULUS

Fig.6 shows the diagram of the analyzed pneumatic
cascade:

P I .

N S — =
o |~ .
L 2r J Vi

_____________________________________ -
¥ L ™~ p
v,
/

Pz

Fig. 6. Diagram of a two-chamber pneumatic cascade

Fig. 7 shows a block diagram of a two-chamber
pneumatic cascade:

Pa(s)
Po(s) Pi(s) (

—> Gus) Gafs)

—

Fig. 7. Block diagram of a two-chamber pneumatic cascade

Assuming the linearity of the model, the equation
describing the dynamics of the diaphragm pressure
transmitter can be written in the form of a system of
differential equations:

d’p,(t dp, (t

%()4'251601 %U+w12p1 (t) = wlzpo (t)
(20a)

d’p,(t dp, (¢

d—;z()+2§2a)2 ;t( ) +;p(t)=w; p, (1)
(20b)

where:

@, , (ra%) - the pulsatance of another elementary
pneumatic system,
&, , <1 - the damping ratio of another elementary

pneumatic system included in the pneumatic cascade.

1 3mre’
Oy, = = (21a)
pl,pZCpl,pZ 411,21/1,2
3lLZVLZ 3
_ Lpl‘pchl‘pzwl‘z ) T _, 37,V (22b)
41‘2 - - = 3 7 2
2 hapPcC nhL,pc
where in:

Cp [stm'5] - pneumatic capacity in another
element of the pneumatic system;

Lp |:m}N_1 :' - pneumatic induction in another
element of the pneumatic system;

Rp [Nsm's] - flow resistance in another element

of the pneumatic system;

V[m3 :' - volume of another transducer chamber,

c [%J - speed of sound in the gas filling the
system;

l[m] - length of another inlet pipe;

r [m] - radius of another inlet tube;
P [kgm'3 :' - gas density;

n [kgm'ls'l :' - dynamic viscosity.

Equations (20a,b) written with the help of
fractional calculus take the following form:

R[[)‘Dlzvpl(t)+2§la)lRé‘D/vpl(t)+a)12p1(t)=a)lzp0(t) (22)
R([{Dzzvpz (t) +2§z“)z RéDzvpz (t) + a)zzpz (t) = wzzpl (t)
where: V>0 .

Using the Laplace transform to equation (22), for
zero initial conditions, we obtain:

2 2 2
(s Y128 m5" + ) )pI (s)=o!p,(s) )
23
2 2 2
(s V428 w,5" + 0 )p2 (s)=w;p, (s)

Thus the transfer function of non-integer order of
the analyzed pneumatic system is obtained:

2
va)(s)zp‘(s)— D

po(s) s +28ms" + o}
(24)

(s) SV 4280, + 0’

2
Gl (s)= P (s) D,

The transfer function of the analyzed system takes
the form:

47



2 2
[ox2N

T +(280,+28,0,)s™ +(ca,Z +4&E,0,0, +ca§)sz“ +
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(25)

For the formula (25), we obtain the spectral
transfer function of the tested transducer:

— w|2wzz
T o" [cos(27rv) + jsin(27rv)] +

(280, +2&,0,) 0™ {Cos(?)f[ sin (?ﬂ +

(o +46 500, + 0] )™ [cos(zv)+ jsin(zv) |+

G'(jo)

+(2cfla)|a)zz +2¢,0] 0, )a)“ {cos(%)+ Jsin (%ﬂ +olo?

(26)

By making elementary transformations, the real
and imaginary part of the spectral transfer function is
calculated:

G" (jo)=P" (0)+ ;0" (») (27)

where:

Knowing the real and imaginary part of the spectral
transfer function of the transducer, one can determine
the equation describing the logarithmic amplitude
step:

i) ()= 20[0g\/[P(v) (w)T +[Q(”) (a))T

(28)

Using the program written in the MATLAB environment,
which was used for conducting the simulations of the
equations describing the Bode plot of the membrane
pressure transducer, a response in the form of plots of
logarithmic magnitude and phase of the analyzed
pneumatic cascade was obtained. The plots are presented in
fig. 8 and fig. 9.

The determined frequency response (fig. 8 and fig. 9)
correctly reflects the dynamics of the model. For the

parameter v=1 , the logarithmic amplitude response (fig.
8) and phase response (fig. 9) coincide with the known
responses of the 4th order oscillation units. From the
amplitude response (fig. 8), one can read the gain decrease,

—80dB / dek

which is , and from the phase response

=-2
(fig. 9), the phase shift ¢ T
v=1

for the parameter

, as it is in the classic oscillation section of the 4th
order.

The analysis of frequency responses (fig. 8 and fig. 9)
shows that the resonant pulsation depends on the
parameter ¥, and hence on the order of the differential, in
the differential equation describing the studied system. By
reducing the order, the resonant pulsation increases. Hence,
the smaller the phase shift of the system is, the smaller the
order of the differential.

Cazcade {, =0.2,(,=02, o, =100 rad, o, = 100 rad

ZEIEI 10 10 10 10

100

-100

-200

=300t

Fig. 8. Logarithmic amplitude response of a pneumatic
cascade described by means of differential equation with
fractional derivatives of non-integer orders for the parameter
v in the range (0.8-1.2) [authors’ own elaboration]
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Fig. 9. Logarithmic phase response of a pneumatic cascade
described by means of differential equation with fractional
derivatives of non-integer orders for the parameter v in the
range (0.8-1.2) [authors’ own elaboration]

IV. CONCLUSIONS

The obtained responses, which arose from the
simulation of the dependencies resulting from the solution
of differential equations of integer orders, overlap the
responses of non-integer orders obtained from the solution
of differential equations of non-integer order for the

parameter v=1 . This is confirmed by the fact that the
classical differential calculus is a special case of the
differential calculus of any arbitrary order, and thus it proves
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that mathematical models have been properly developed.

The use of the description of dynamic properties of
pneumatic systems based on the fractional calculus will
allow to analyze the properties of a wide class of pneumatic
systems of arbitrary orders in the future. Fractional calculus
is particularly useful in building dynamic models of
mathematical systems working in conditions that cannot be
described with differential equations of integer orders. This
can be deduced by analyzing systems such as the long
electric line of infinitely large length or the supercapacitor of
a few thousand Farads, which are now also described with
fractional calculus.

WYBRANE ELEMENTY | UKLADY PNEUMATYCZNE OPISANE ZA
POMOCA RACHUNKU ROZNICZKOWEGO NIECALKOWITYCH
RZEDOW

W artykule przedstawiono zastosowanie rachunku réznickowego
niecatkowitych rzedéw (ang. fractional calculus) do opisu dynamiki
Zjawisk uktaddéw pneumatycznych wybranych elementéw i ukfaddw.
Whudowie modeli matematycznych, analizowanych ukfadéw
dynamicznych,  wykorzystano  definie  Riemanna-Liowilea
pochodno—catki niecatikowitego rzedu. Dla analizowanego modelu,
Wyznaczono transmitancje operatorowa catkowitego i niecatkowitego
rzedu.  Wyznaczono  zaleznosc opisujgce  charakterystyki
czestotiiwosciowe, na drodze symulaci komputerowej uzyskano
charakterystyki analizowanych ukdadéw. Do badar symulacyjnych
wykorzystano oprogramowanie MATLAB.

Slowa kluczowe: rachunek rézniczkowy niecatkowitych rzedéw
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