Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Moment zginający belek żelbetowych z drobnego kruszywa odpadowego
Języki publikacji
Abstrakty
This report presents the results of laboratory experiments of bending moment for fourteen concrete beams with steel bars. Twelve of the beams were made of waste fine aggregate concrete containing steel fibres: six with steel fibres 30/0.55 and six with steel fibres 50/0.80. The next two beams were made of plain concrete. The results of the experiments were compared with theoretical calculations based on a Eurocode 2 and also with the method suggested by Henager and Doherty.
Artykuł przedstawia wyniki laboratoryjnych badań momentu zginającego czternastu belek żelbetowych. Dwanaście z nich wykonano na bazie piasku odpadowego wzbogaconego włóknami stalowymi tj.: sześć z włóknami 30/0.55 i sześć z włóknami 50/0.80. Pozostałe dwie belki wykonano z betonu zwykłego. Wyniki badań eksperymentalnych zostały porównane z obliczeniami przeprowadzonymi na podstawie Eurocode 2 i metody zaproponowanej przez Henager i Doherty.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1505--1514
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
autor
- Koszalin University of Technology, Poland
autor
- Koszalin University of Technology, Poland
autor
- Koszalin University of Technology, Poland
Bibliografia
- 1. ACI-544.4R-88. (1994). Desing considerations for steel fiber reinforced concrete.
- 2. Błaszczyński, T., & Przybylska-Fałek, M. (2015). Steel Fibre Reinforced Concrete as a Structural Material. Procedia Engineering, 122, 282-289.
- 3. Craig, R. J., Decker, J., Dombrowski, L., Laurencelle, R., & Federovich, J. (1987). Inelastic behaviour of reinforced fibrous concrete. ASCE Journal of Structural Engineering, 802-817.
- 4. Domski, J. (2015). Long-term Study on Fibre Reinforced Fine Aggregate Concrete Beams Based on Waste Sand. Rocznik Ochrona Środowiska, 17, 188-199.
- 5. Domski, J. (2016). A blurred border between ordinary concrete and SFRC. Construction and Building Materials, 112, 247-252.
- 6. Domski, J., & Głodkowska, W. (2017). Selected Mechanical Properties Analysis of Fibrous Composites Made on the Basis of Fine Waste Aggregate. Rocznik Ochrona Środowiska, 19, 81-95.
- 7. EN-1992-1-1. (2008). Eurocode 2 Design of concrete structures – part 1: General rules and rules of buildings.
- 8. Ezeldin, A. S., & Shiah, T. W. (1995). Analytical immediate and long-term deflections of fibre-reinforced concrete beams. ASCE Journal of Structural Engineering, 727-738. fib Bulletin 55. (2010). Model Code. Lausanne: International Federation for Structural Concrete.
- 9. Głodkowska, W., & Ziarkiewicz, M. (2018). Cracking behavior of steel fiber reinforced waste sand concrete beams in flexure – Experimental investigation and theoretical analysis. Engineering Structures, 176, 1-10.
- 10. Henager, C. H., & Doherty, T. J. (1976). Analysis of reinforced fibrous concrete beams. ASCE Journal of the Structural Division, 177-188.
- 11. Imam, M., Vandewalle, L., & Mortelmans, F. (1995). Shear-moment analysis of reinforced high strength concrete beams containing steel fibres. Canadian Journal of Civil Engineering, 462-470.
- 12. Kormeling, H. A., Reinhardt, H. W., & Shah, S. P. (1980). Static and fatigue properties of concrete beams reinforced with bars and fibers. ACI Journal, 36-43.
- 13. Lim, T. Y., Paramasivam, P., & Lee, S. L. (1987). Behaviour of reinforced steel-fiberconcrete beams in flexural. ASCE Journal of Structural Engineering, 2439-2458.
- 14. Maidl, B. R. (1995). Steel Fibre reinforced Concrete. Berlin: Ernst & Sohn.
- 15. Meda, A., Minelli, F., & Plizzari, G. A. (2012). Flexural behaviour of RC beams in fibre reinforced concrete. Composites Part B: Engineering, 2930-2937.
- 16. Narayanan, R., & Kareem-Palanjian, A. S. (1986). Torsion, bending, and shear in prestressed concrete beams containing steel fibers. ACI Journal, 423-431.
- 17. Padmarajaiah, S. K., & Ramaswamy, A. (2004). Flexural strength predictions of steel fibre reinforced high-strength concrete in fully/partially prestressed beam specimens. Cement and Concrete Composites, 275-290.
- 18. Pająk, M., & Kühn, T. (2016). The influence of steel fibers on the dynamic response of self-compacting concrete. Key Engineering Materials, 179-186.
- 19. Ponikiewski, T., Katzer, J., Bugdol, M., & Rudzki, M. (2014). Determination of 3D porosity in steel fibre reinforced SCC beams using X-ray computed tomography. Construction and Building Materials, 68, 333-340.
- 20. RILEM TC 162-TDF. (2003). Test and design methods for steel fibre reinforced concrete – sigma-epsilon design method: final recommendation. Materials and Structure, 560-567.
- 21. Sadowska-Buraczewska, B. (2016). Influence of SFRC Layer on Deflections and Cracks of Composite RC Slab. Archives of Civil Engineering, 177-188.
- 22. Sadowska-Buraczewska, B., & Skrzypczak, I. (2019). Reinforced Concrete Beams Made of High-Performance Recycled Aggregate with Use Steel Fibre. IOP Conference
- 23. Series: Materials Science and Engineering (471).
- 24. Seitl, S., Keršner, Z., Bílek, V., & Knésl, Z. (2010). Fatigue parameters of cement-based composites with various types of fibers. Key Engineering Materials, 417, 129-132.
- 25. Sucharda, O., Pająk, M., Ponikiewski, T., & Konecny, P. (2017). Identification of mechanical and fracture properties of self-compacting concrete beams with different types of steel fibres using inverse analysis. Construction and Building Materials, 263-275.
- 26. Swamy, R. N., & Al-Ta`an, S. A. (1981). Deformation and ultimate strength in flexure of reinforced concrete beams made with steel fiber concrete. ACI Journal, 395-405.
- 27. Yazıcı, Ş., İnan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21, 1250-1253.
- 28. Zarzycki, P. K., Katzer, J., & Domski, J. (2017). Fast classification of fibres for concrete based on multivariate statistics. Computers and Concrete, 20(1), 23-29.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbc787be-ddd9-429b-a960-ac08df179729