PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving the permeability characteristic of nickle oxide/yttria stabilized zirconia anode through thermal decomposition of organic porous support as sustainable material for green hydrogen ecosystem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modification of the anode for fuel cell is essential to achieve the effective conversion rate at desired level. It is influenced by the gas distribution during the process. The compact profile of the anode is a direct impact for using sintering as reliable production method, making further material modification is demanded to solve the issue. At this work, practical solution is conducted to maintain the effective gas diffusion for anode, which is achieved through surface decoration enhancement. The study uses organic porous support (PS) as one sustainable and applicable method. The organic PS is made from flour, which evaporates during the sintering process. The diffraction profile for the produced anode indicates no substantial changes in the structural and physical characteristics. The morphology observation implies various models on the pore formation, including an elongated gap, achieved by a higher PS ratio (15 wt%). It promotes the highest permeability up to 0.425 m2, with maximum partial pressure difference only 4.53 kPa. It shows the achievement of surface modification is reliable to provide substantial improvement on the gas distribution throughout the conversion process. Thus, the contribution of this work is possible for applied as reliable method to improve the pores formation.
Słowa kluczowe
Twórcy
  • Department of Mechanical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
autor
  • Department of Mechanical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
  • Department of Mechanical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
  • Department of Mechanical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
  • Department of Mechanical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
Bibliografia
  • 1. Warguła Ł, Wilczyński D, Wieczorek B, Palander T, Gierz Ł, Nati C, Sydor M. Characterizing sawdust fractional composition from oak parquet woodworking for briquette and pellet production. Adv Sci Technol Res J. 2023;17(5):236–47.
  • 2. Rahman RA, Sulistyo, Suryo Utomo MSKT, Dewangga Putra RD. The optional approach in recycling plastic waste for energy storage application: A detailed evaluation of stabilized–hexadecanoic acid/plastic. Case Stud Chem Environ Eng. 2024;9(April):0–5.
  • 3. As’ad S, Alsaqoor S, Al-Busool MAA, Abu-Zaid M, Joka Yilidz M, Borowski G, Al-Khawaldeh MA. Performance comparison of four-stroke diesel engine fuelled by various biodiesel blends and diesel. Adv Sci Technol Res J. 2023;17(4):46–52.
  • 4. Ismail, Syahbana MSL, Rahman RA. Thermal performance assessment for an active latent heat storage tank by using various finned-coil heat exchangers. Int J Heat Technol. 2022;40(6):1470–7.
  • 5. Tavakol-Moghaddam Y, Boroushaki M, Astaneh M. Reinforcement learning for battery energy management: A new balancing approach for Li-ion battery packs. Results Eng. 2024;23(July):102532. Available from: https://doi.org/10.1016/j.rineng.2024.102532.
  • 6. Shboul B, Zayed ME, Alrbai M, Kafiah F, Almomani F. Comprehensive 3E-energetic, economic, and environmental-analysis of a hybrid solar dish-Brayton engine and fuel cell system for green hydrogen and power generation. Int J Hydrogen Energy. 2024;(June). Available from: https://doi.org/10.1016/j.ijhydene.2024.08.511.
  • 7. Jose A, Bekal S, U DS, K G. Development and Analysis of Current Collectors for Proton Exchange Membrane Fuel Cells. Adv Sci Technol Res J. 2024;18(6):331–40.
  • 8. Kabir A, Koszelow D, Miruszewski T, Tinti VB, Esposito V, Kern F, Molin S. Assessment of High-Temperature Oxidation Properties of 316L Stainless Steel Powder and Sintered Porous Supports for Potential Solid Oxide Cells Applications. Adv Sci Technol Res J. 2024;18(5):10–8.
  • 9. Niazmand M, Maghsoudipour A, Alizadeh M, Khakpour Z, Kariminejad A. Effect of dip coating parameters on microstructure and thickness of 8YSZ electrolyte coated on NiO-YSZ by sol-gel process for SOFCs applications. Ceram Int. 2022;48(11):16091–8.
  • 10. Ode L, Firman M, Rahmalina D, Rahman RA. Hybrid energy-temperature method (HETM): A low-cost apparatus and reliable method for estimating the thermal capacity of solid – liquid phase change material for heat storage system. HardwareX. 2023;16(December):e00496.
  • 11. Yang X, Li P, Guo C, Yang W, Zhou N, Huang X, Yang Y. Research progress on wide-temperature-range liquid electrolytes for lithium-ion batteries. J Power Sources. 2024;624(October):235563. Available from: https://doi.org/10.1016/j.jpowsour.2024.235563.
  • 12. Suyitno BM, Rahmalina D, Rahman RA. Increasing the charge/discharge rate for phase-change materials by forming hybrid composite paraffin/ash for an effective thermal energy storage system. AIMS Mater Sci. 2023;10(1):70–85.
  • 13. Lu F, Shi Y, Shi L, Li M, Cui R, Wang J, He H, Su J, Wang J, Cai B. Improved SOFC performance by enhancing cathode/electrolyte bonding and grain refinement of cathode with thermal expansion offset. Ceram Int. 2024;50(May):46318–26.
  • 14. Li M, Lu F, Cui R, Shi L, Wang J, He H, Su J, Cai B. High performance thermal expansion offset LSCF-SZM cathodes of IT-SOFCs. Solid State Ionics. 2024;414(April):116639. Available from: https://doi.org/10.1016/j.ssi.2024.116639.
  • 15. Timurkutluk C. Development of functionally graded anode supports for microtubular solid oxide fuel cells by tape casting and isostatic pressing. Int J Hydrogen Energy. 2023;48(46):17641–53.
  • 16. Zhou X, Wang J, Pang X, Guo X, Zhao Z, Sunarso J, Yu F, Meng X, Zhang J, Yang N. Integrated micro-tubular SOFC stack supported by a monolithic porous zirconia prepared using 3D printing technology. J Eur Ceram Soc. 2024;44(13):7837–45.
  • 17. Wang T, Sun N, Wang R, Chen D, Dong D, Shen X, Wei T, Wang Z. One-step preparation of large-size 1.5-μm-thick robust YSZ electrolyte for high CH4 conversion SOFCs at 600 °C. Sep Purif Technol. 2024;349(May):127825.
  • 18. Gao B, Liu Z, Ji S, Ao Q. Fabrication of a YSZ electrolyte layer via co-pressing/co-sintering for tubular NiO-YSZ anode-supported SOFCs. Mater Lett. 2022;323(April):132547.
  • 19. Han Z, Dong H, Wang H, Yang Y, Yu H, Yang Z. Temperature-dependent chemical incompatibility between NiO-YSZ anode and alkaline earth metal oxides: Implications for surface decoration of SOFC anode. J Alloys Compd. 2023;968(June):172150.
  • 20. Kuterbekov K, Nikonov A, Bekmyrza K, Khrustov V, Pavzderin N, Kabyshev A, Kubenova M. Co-sintering of gradient anode – electrolyte structure for microtubular SOFC. Ceram Int. 2024;50(10):17242–51.
  • 21. Khatun N, Chiu C, Lin C, Lin J, Wang S, Thomas C. Enhancing the performance of ammonia-fed intermediate temperature solid oxide fuel cells (IT-SOFCs) through the application of Ni2MnGa Heusler alloy on the anode surface. J Power Sources. 2024;600(March):234252. Available from: https://doi.org/10.1016/j.jpowsour.2024.234252.
  • 22. Díaz-Aburto I, Colet-Lagrille M, Fuentes I, Herrera-Maldonado M, Donoso P, Tasca F, Zagal H. Fuel flexible SOFC with a Mo-doped CeO2/YSZ mesoporous anode fabricated by the evaporation induced self-assembly (EISA) method. J Power Sources. 2024;621(June).
  • 23. Lu P, Wei S, Du Z, Ma W, Ni S. Analysis and comparison of multi-physics fields for different flow field configurations in SOFC. Int J Heat Mass Transf. 2024;229:125708. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125708.
  • 24. Liu X, Sun SD, Dai Y, Zhang HY, Li CX. Numerical study of temperature distribution in tubular segmented-in-series SOFC with co-flow and counter-flow arrangements. Int J Hydrogen Energy. 2024;74(June):447–58. Available from: https://doi.org/10.1016/j.ijhydene.2024.06.145.
  • 25. Alinejad Z, Parham N, Tawalbeh M, Al-Othman A. Progress in green hydrogen production and innovative materials for fuel cells: A pathway towards sustainable energy solutions. Int J Hydrogen Energy. 2024;(May). Available from: https://doi.org/10.1016/j.ijhydene.2024.09.153.
  • 26. Yang T, Chen W, Zhang H, Fu YQ. Interfacial bonding characteristics of in situ synthesized graphene-coated copper nanocomposite powders using wheat flour precursor. J Mater Sci. 2022;57(41):19309–26. Available from: https://doi.org/10.1007/s10853-022-07821-5.
  • 27. Yuan J, Chen Y, Yang H, Sun J, Cai P, Lin M, Chen M, Wang H, Bai J. Vat photopolymerization 3D printing of NiO-YSZ anode for solid oxide fuel cells. J Eur Ceram Soc. 2024;44(8):5068–79. Available from: https://doi.org/10.1016/j.jeurceramsoc.2024.02.020.
  • 28. Błesznowski M, Sikora M, Kupecki J, Makowski Ł, Orciuch W. Mathematical approaches to modelling the mass transfer process in solid oxide fuel cell anode. Energy. 2022;239.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbc3f21b-e29a-4902-8e5a-174ff92f31c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.