Tytu艂 artyku艂u
Autorzy
Tre艣膰 / Zawarto艣膰
Pe艂ne teksty:
Identyfikatory
Warianty tytu艂u
J臋zyki publikacji
Abstrakty
With the widespread demand for high-precision controllable pulse signals in electronic systems such as communications, radar, and quantum computing, the timing resolution and waveform flexibility adjustment capability of excitation signal sources are more demanding. However, direct digital synthesis (DDS) techniques are limited by timing resolution, while computational synthesis methods are computationally complex and resource-consuming despite higher accuracy. In this paper, an improved DDS pulse waveform synthesis method is proposed, which effectively reduces the storage requirement by storing only the pulse waveform edge samples as feature samples instead of all the samples in the complete waveform period. Meanwhile, combining with the adaptive phase adjustment algorithm, the phase offset value is calculated based on the overflow result of the phase accumulator, and the edge position is adjusted to realize the waveform fitting with higher timing resolution. The feature-fitting scheme streamlines the data storage content while avoiding the complexity of real-time computation, achieving a balance between computational resources and memory usage. The method uses 1 GSPS sampling rate and 1 BRAM to successfully synthesize pulse waveforms with timing resolutions of 100 ps and 10 ps, realizes edge time and amplitude adjustments, and achieves an rms jitter of 10.04 ps. The method provides a feasible solution for high-precision pulse signal synthesis with low storage occupation and provides theoretical and practical support for the realization of high-performance electronic test equipment.
S艂owa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--18
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr., wzory
Tw贸rcy
autor
- University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
- University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
- University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
- University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
- University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
Bibliografia
- [1] Huang, W.-C., Hou, G.-H., Huang, J.-L., & Kuo, T. (2019). An FPGA-Based Data Receiver for Digital IC Testing. 2019 IEEE International Test Conference in Asia (ITC-Asia), 25-30. https://doi.org/10.1109/ITC-Asia.2019.00018
- [2] Chen, P., Zhang, F., Zong, Z., Hu, S., Siriburanon, T., & Staszewski, R. B. (2019). A 31-饾渿W, 148-fs Step, 9-bit Capacitor-DAC-Based Constant-Slope Digital-to-Time Converter in 28-nm CMOS. IEEE Journal of Solid-State Circuits, 54(11), 3075-3085. https://doi.org/10.1109/jssc.2019.2939663
- [3] Yu, Y., Hong, W., Jiang, Z. H., Zhang, H., & Guo, C. (2019). Multibeam generation and measurement of a DDS-Based digital beamforming array transmitter at Ka-Band. IEEE Transactions on Antennas and Propagation, 67(5), 3030-3039. https://doi.org/10.1109/tap.2019.2896733
- [4] Jung, D., Ryu, K., Park, J., & Jung, S. (2018b). All-Digital Process-Variation-Calibrated Timing Generator for ATE with 1.95-PS Resolution and Maximum 1.2-GHz Test Rate. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(6), 1015-1025. https://doi.org/10.1109/tvlsi.2018.2801030
- [5] Bowler, R., Warring, U., Britton, J.W., Sawyer, B. C., & Amini, J. (2013). Arbitrary waveform generator for quantum information processing with trapped ions. Review of Scientific Instruments, 84(3). https://doi.org/10.1063/1.4795552
- [6] Huang, X., Saniie, J., Bakhtiari, S., & Heifetz, A. (2020). Software-defined ultrasonic communication system based on time-reversal signal processing. 2017 IEEE International Ultrasonics Symposium (IUS), 1-4. https://doi.org/10.1109/ius46767.2020.9251397
- [7] Kazancili, U. U., & Onverdi, N. O. (2021). Pulse generator applications in radio over fiber communication systems. 2022 30th Signal Processing and Communications Applications Conference (SIU), 1-4. https://doi.org/10.1109/siu53274.2021.9477830
- [8] Cai, S., Chen, L., Chen, Y., Yin, H., & Wang, W. (2023). Pulse-Based ISAC: Data recovery and ranging estimation for multi-path fading channels. IEEE Transactions on Communications, 71(8), 4819-4838. https://doi.org/10.1109/tcomm.2023.3277039
- [9] Li, K., Ni, W., & Zhang, P. (2022). Poster: An experimental localization testbed based on UWB channel impulse response measurements. In 2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), 515-516. https://doi.org/10.1109/IPSN54338.2022.00058
- [10] Ashraf, M. A., Jamil, K., Sebak, A. R., Alshebeili, S., Shoaib, M., Alkanhal, M., & Alhekail, Z. (2017). Evaluation of a single-input multiple-output antenna array for ultra-wide band applications. AEU - International Journal of Electronics and Communications, 79, 291-300. https://doi.org/10.1016/j.aeue.2017.06.019
- [11] Ghiri, R. E., & Entesari, K. (2021). Time-Domain Ultrawideband Chipless RFID Readers. IEEE Transactions on Instrumentation and Measurement, 70, 1-10. https://doi.org/10.1109/tim.2021.3091472
- [12] Li, P., Chen, S., Cai, Y., Chen, J., & Li, J. (2015). Accurate TOF measurement of ultrasonic signal echo from the liquid level based on a 2-D image processing method. Neurocomputing, 175, 47-54. https://doi.org/10.1016/j.neucom.2015.10.014
- [13] Kim, J., Yasutomi, K., Kagawa, K., & Kawahito, S. (2021). High-Linearity High-Resolution Time-of-Flight Linear-Array Digital Image Sensor Using Time-Domain Feedback. Sensors, 21(2), 454. https://doi.org/10.3390/s21020454
- [14] Sarbolandi, H., Plack, M., & Kolb, A. (2018). Pulse Based Time-of-Flight Range Sensing. Sensors, 18(6), 1679. https://doi.org/10.3390/s18061679
- [15] Guo, Y., Liu, Q., Li, Y., Huang, W., Tian, T., Zhang, S., Wu, N., Tan, S., Deng, N., Wang, Z., Jiang, H., Li, T., & Zheng, Y. (2023). A Polar-Modulation-Based Cryogenic Transmon Qubit State Controller in 28 nm Bulk CMOS for Superconducting Quantum Computing. IEEE Journal of Solid-State Circuits, 58(11), 3060-3073. https://doi.org/10.1109/jssc.2023.3311639
- [16] Leonard, E., Beck, M. A., Nelson, J., Christensen, B., Thorbeck, T., Howington, C., Opremcak, A., Pechenezhskiy, I., Dodge, K., Dupuis, N., Hutchings, M., Ku, J., Schlenker, F., Suttle, J., Wilen, C., Zhu, S., Vavilov, M., Plourde, B., & McDermott, R. (2019). Digital coherent control of a superconducting Qubit. Physical Review Applied, 11(1). https://doi.org/10.1103/physrevapplied.11.014009
- [17] Giovanni, M., & Pumera, M. (2010). Molybdenum metallic nanoparticle detection via differential pulse voltammetry. Electrochemistry Communications, 13(2), 203-204. https://doi.org/10.1016/j.elecom.2010.12.014
- [18] Akchurin, G., Khlebtsov, B., Akchurin, G., Tuchin, V., Zharov, V., & Khlebtsov, N. (2007). Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology, 19(1), 015701. https://doi.org/10.1088/0957-4484/19/01/015701
- [19] Park, J., Ahn, C., Hong, J., & Sim, J. (2020). A Picosecond-Resolution Digitally-Controlled Timing Generator with One-Clock-Latency at Arbitrary Instantaneous Input. IEEE Transactions on Circuits & Systems II: Express Briefs, 67(9), 1544-1548. https://doi.org/10.1109/tcsii.2020.3010535
- [20] Ramirez-Angulo, J. (1992). A compact current controlled CMOS waveform generator. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 39(12), 883-885. https://doi.org/10.1109/82.208587
- [21] Kim, S., & Lee, J. (2014). Design and implementation of a hybrid UWB pulse generator for automotive Radar. Elektronika ir elektrotechnika, 20(3). https://doi.org/10.5755/j01.eee.20.3.2774
- [22] Amiri, A., Khouas, A., & Boukadoum, M. (2009). Pseudorandom stimuli generation for testing time-to-digital converters on an FPGA. IEEE Transactions on Instrumentation and Measurement, 58(7), 2209-2215. https://doi.org/10.1109/tim.2009.2013670
- [23] Shi, Z., Mu, S., Qin, X., Dai, Y., Rong, X., & Du, J. (2018). An X-band pulsed electron paramagnetic resonance spectrometer with time resolution improved by a field-programmable-gate-array based pulse generator. Review of Scientific Instruments, 89(12). https://doi.org/10.1063/1.5048551
- [24] Sharma, A., Sun, Y., & Simpson, O. (2021). Design and Implementation of a Re-Configurable Versatile Direct Digital Synthesis-Based Pulse Generator. IEEE Transactions on Instrumentation and Measurement, 70, 1-14. https://doi.org/10.1109/tim.2021.3094240
- [25] Ziabakhsh, S., Aouini, S., Gibbins, R. G., Mikkelsen, M., Moslemi-Tabrizi, S., & Ben-Hamida, N. (2021). A Memory-Based Direct-Digital Frequency Synthesizer for Fractional Synchronization. IEEE Transactions on Circuits & Systems II Express Briefs, 69(3), 899-903. https://doi.org/10.1109/tcsii.2021.3125568
- [26] Ren, L., Xue, X., & Zheng, Y. (2021). The design of high precision arbitrary waveform generator based on DDS technology and FPGA. Journal of Physics Conference Series, 1820(1), 012010. https://doi.org/10.1088/1742-6596/1820/1/012010
- [27] Liu, H., Fu, Z., Kong, D., Wang, H., & Xiao, Y. (2021). Method of high timing resolution pulse synthesis based on virtual sampling. Metrology and Measurement Systems, 373-389. https://doi.org/10.24425/mms.2022.140034
- [28] Liu, H., Chen, H., Fu, Z., Qi, S., Xiao, Y., & Wang, H. (2022). Design and implementation of an ultra-high timing resolution pulse generator based on real-time computation. 2022 IEEE AUTOTESTCON, 1-6. https://doi.org/10.1109/AUTOTESTCON47462.2022.9984792
- [29] Ai, X., Fu, Z., Liu, H., & Kong, D. (2024). High-resolution waveform synthesis based on phase-amplitude mapping. Metrology and Measurement Systems, 547-564. https://doi.org/10.24425/mms.2024.150285
- [30] Liu, H., Fu, Z., & Kong, D. (2023). An ultra-high timing resolution pulse generator with spur suppression and correction of errors based on real-time computation. Review of Scientific Instruments, 94(8). https://doi.org/10.1063/5.0161561
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbba8bfd-df82-4bbd-9805-4f998bef6998
JavaScript jest wy艂膮czony w Twojej przegl膮darce internetowej. W艂膮cz go, a nast臋pnie od艣wie偶 stron臋, aby m贸c w pe艂ni z niej korzysta膰.