PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of different roller end-flange constructions on the fatigue life of the cylindrical roller bearings : A novel flange deformation formula

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper performs the fatigue life analysis of the radial Cylindrical Roller Bearings (CRBs) with consideration of various roller end-flange shapes such as toroidal-toroidal, spherical-toroidal, and spherical-conical. A novel formula for each flange contact deformation in cylindrical roller bearing with different roller end-flange geometry including toroidal geometry is developed. Inner ring misalignment angle and radial deflection results obtained from the present study are verified with numerical and experimental results from the literature. The results approach to that of literature when the flange is changed from toroidal geometry to conical geometry. Using formulas developed in the present study, the effect of various roller end-flange geometries on the bearing life is investigated for different external loadings. It is observed that the bearing life increases when the roller end and flange are changed to toroidal geometry.
Rocznik
Strony
art. no. 174296
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Mechanical Engineering, Yildiz Technical University, Turkey
  • Mechanical Engineering, Yildiz Technical University, Turkey
Bibliografia
  • 1. Ahmadi N, Keer L M, Mura T. Non-Hertzian contact stress analysis for an elastic half space-normal and sliding contact. International Journal of Solids and Structures 1983; 19(4): 357–373, https://doi.org/10.1016/0020-7683(83)90032-X.
  • 2. Ai X. Roller Bearing With Enhanced Roller-End And Flange Contact. US Patent 10,428,870 B2 2019.
  • 3. Andreason S. Load distribution in a taper roller bearing arrangement considering misalignment. Tribology 1973; 6(3): 84–92, https://doi.org/10.1016/0041-2678(73)90241-8.
  • 4. Aramaki H, Cheng H S, ZhuD. Film thickness, friction, and scuffing failure of rib/roller end contacts in cylindrical roller bearings. Journal of Tribology 1992; 114(2): 311–316, https://doi.org/10.1115/1.2920889.
  • 5. Bayrak R, Sagirli A. Fatigue life analysis of the radial cylindrical roller bearings roller end-flange construction effect. Mechanics Based Design of Structures and Machines 2022: 1–26, https://doi.org/10.1080/15397734.2022.2084751.
  • 6. Chudzik A, Warda B. Fatigue life prediction of a radial cylindrical roller bearing subjected to a combined load using FEM. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2020; 22(2): 212–220, https://doi.org/10.17531/ein.2020.2.4.
  • 7. Chudzik A, Warda B. Effect of radial internal clearance on the fatigue life of the radial cylindrical roller bearing. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2019; 21(2): 211–219, https://doi.org/10.17531/ein.2019.2.4.
  • 8. DD ISO/TS 16281:2008. Rolling bearings -Methods for calculating the modified reference rating life for universally loaded bearings. Geneva, Switzerland, 2008.
  • 9. Hamrock B J, Brewe D. Simplified Solution for Stresses and Deformations. J. of Lubrication Tech. 1983; 105(2): 171–177, https://doi.org/10.1201/9780203021187.ch17.
  • 10. Harris T A. The Effect of Misalignment on the Fatigue Life of Cylindrical Roller Bearings Having Crowned Rolling Members. J. of Lubrication Tech. 1969; 91(2): 294–300, https://doi.org/10.1115/1.3554918.
  • 11. Harris T A. Rolling Bearing Analysis. 4th ed. New York, John Wiley & Sons Inc: 2001.
  • 12. Hartnett M J. The analysis of contact stresses in rolling element bearings. Journal of Tribology 1979; 101(1): 105–109, https://doi.org/10.1115/1.3453270.
  • 13. Ijuin S, Yamamoto T. Cylindrical Roller Bearing. US Patent 6,530,693 B1 2003.
  • 14. Jamison W E, Kauzlarich J J, Mochel E V. Geometric effects on the rib-roller contact in tapered roller bearings. ASLE Transactions 1977; 20(1): 79–88, https://doi.org/10.1080/05698197708982820.
  • 15. Jiang X, Wong P L, Zhang Z. Thermal Non-Newtonian EHL Analysis of Rib-Roller End Contact in Tapered Roller Bearings. Journal of Tribology 1995; 117(4): 646–654, https://doi.org/10.1115/1.2831530.
  • 16. Kabus S, Hansen M R, Mouritsen O. A new quasi-static cylindrical roller bearing model to accurately consider non-hertzian contact pressure in time domain simulations. Journal of Tribology 2012; 134(4): 1–10, https://doi.org/10.1115/1.4007219.
  • 17. Korrenn H. The axial load-carrying capacity of radial cylindrical roller bearings. Journal of Tribology 1970; 92(1): 129–134, https://doi.org/10.1115/1.3451292.
  • 18. Krzeminski-Freda H, Warda B. The effect of roller end-flange contact shape upon frictional losses and axial load of the radial cylindrical roller bearing. Tribology Series 1989; 14: 287–295, https://doi.org/10.1016/S0167-8922(08)70205-0.
  • 19. Krzemiński-Freda H, Warda B. Correction of the roller generators in spherical roller bearings. Wear 1996; 192(1–2): 29–39, https://doi.org/10.1016/0043-1648(95)06739-6.
  • 20. Li M, Wen S. The study of roller end and guiding shoulder construction of roller bearings. Tribology Series 1989; 14: 297–301, https://doi.org/10.1016/S0167-8922(08)70206-2.
  • 21. Liu J Y. The Effect of Misalignment on the Life of High Speed Cylindrical Roller Bearings. J. of Lubrication Tech 1971; 93(1): 60–68, https://doi.org/10.1115/1.3451678.
  • 22. Liu J Y. Analysis of Tapered Roller Bearings Considering High Speed and Combined Loading. J. of Lubrication Tech. 1976; 98(4): 564–572, https://doi.org/10.1115/1.3452933.
  • 23. Morrison F R, Pirvics J, Crecelius W J. A functional evaluation of a thrust carrying cylindrical roller bearing design. Journal of Tribology 1979; 101(2): 164–169, https://doi.org/10.1115/1.3453304.
  • 24. de Mull J M, Vree J M, Maas D A. Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction -part II: application to roller bearings and experimental verification. Journal of Tribology 1989; 111(1): 149–155, https://doi.org/10.1115/1.3261865.
  • 25. Nagatani H. Fatigue Life Estimation for Roller Bearings Under Edge Load Occurrence. Transactions of the JapanSociety of Mechanical Engineers Series C 2008; 74(742): 1609–1616, https://doi.org/10.1299/kikaic.74.1609.
  • 26. Nagatani H. Improved method of roller bearing fatigue life prediction under edge loading conditions. Tribology Transactions 2010; 53(5): 695–702, https://doi.org/10.1080/10402001003699593.
  • 27. Oswald F B, Zaretsky E V., Poplawski J V. Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings. Tribology Transactions 2012; 55(2): 245–265, https://doi.org/10.1080/10402004.2011.639050.
  • 28. PD ISO/TR 1281-1:2008. Rolling bearings —Explanatory notes on ISO 281, Part 1: Basic dynamic load rating and basic rating life. Geneva, Switzerland, 2008.
  • 29. Poplawski J V., Zaretsky E V., Peters S M. Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction. Cleveland, 2000.https://doi.org/10.1080/10402000108982466
  • 30. Purdy G T. Rolling Bearings. US Patent 3,268,278 1966.
  • 31. SKF. Rolling bearings PUB BU/P1 17000/1 EN. 2018.
  • 32. Timoshenko S, Goodier J N. Theory of Elasticity. 2nd edition. New York, McGraw-Hill Company: 1951.
  • 33. Tong V C, Hong S W. Fatigue life of tapered roller bearing subject to angular misalignment. Proceedings of the Institution ofMechanical Engineers, Part C: Journal of Mechanical Engineering Science 2016; 230(2): 147–158, https://doi.org/10.1177/0954406215578706.
  • 34. Tong V C, Kwon S W, Hong S W. Fatigue life of cylindrical roller bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2017; 231(5): 623–636, https://doi.org/10.1177/1350650116668767.
  • 35. Wang Z, Song J, Li X, Yu Q. Modeling and Dynamic Analysis of Cylindrical Roller Bearings Under Combined Radial and Axial Loads. Journal of Tribology 2022; 144(12): 1–12, https://doi.org/10.1115/1.4055406.
  • 36. Warda B, Chudzik A.Effect of ring misalignment on the fatigue life of the radial cylindrical roller bearing. International Journal of Mechanical Sciences 2016; 111–112: 1–11, https://doi.org/10.1016/j.ijmecsci.2016.03.019.
  • 37. Warda B, Chudzik A. Fatigue life prediction of the radial roller bearing with the correction of roller generators. International Journal of Mechanical Sciences 2014; 89: 299–310, https://doi.org/10.1016/j.ijmecsci.2014.09.015.
  • 38. Wirsching S, Marian M, Bartz M et al. Geometrical optimization of the ehl rollerface/rib contact for energy efficiency in tapered roller bearings. Lubricants 2021; 9(7): 1-19, https://doi.org/10.3390/lubricants9070067.
  • 39. Yu A, Huang H Z, Li H et al. Reliability analysis of rolling bearings considering internal clearance. Journal of Mechanical Science and Technology 2020; 34(10): 3963–3971, https://doi.org/10.1007/s12206-020-2206-9.
  • 40. Zhang Z, Qiu X, Hong Y. Ehl analysis of rib-roller end contact in tapered roller bearings. Tribology Transactions 1988; 31(4): 461–467, https://doi.org/10.1080/10402008808981849.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fbabba30-063c-426e-b985-1fe797c7de9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.