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Abstract. We study second-order linear Sturm–Liouville problems involving general
homogeneous linear Riemann–Stieltjes integral boundary conditions. Conditions are obtained
for the existence of a sequence of positive eigenvalues with consecutive zero counts of the
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1. INTRODUCTION

We study the linear Sturm–Liouville Problem (SLP) consisting of the equation

−(p(t)y′)′ + q(t)y = λw(t)y, t ∈ (a, b), (1.1)

and one of the general homogeneous linear Riemann–Stieltjes integral boundary
conditions (BCs)





(py′)(c) = 0,

δ21y(b) + δ22(py′)(b)−
b∫
a

[y(s) dξ1(s) + (py′)(s) dξ2(s)] = 0,
(1.2)

and 



δ11y(a) + δ12(py′)(a)−
b∫
a

[y(s) dη1(s) + y′(s) dη2(s)] = 0,

δ21y(b) + δ22(py′)(b)−
b∫
a

[y(s) dξ1(s) + (py′)(s) dξ2(s)] = 0,
(1.3)
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where c ∈ [a, b) and the integrals in (1.2) and (1.3) are Riemann–Stieltjes integrals
with respect to ηi(s), and ξi(s), respectively, with ξi(s) and ηi(s) being functions of
bounded variation, for i = 1, 2.

In the case that ξ1(s) = ξ2(s) = s, the Riemann–Stieltjes integrals in BC (1.2)
reduce to the Riemann integrals. In the case that ξ1(s) =

∑g1
i=1 k1iχ(s − ξ∗i ) and

ξ2(s) =
∑g1
i=1 k2iχ(s − ξ∗i ), where {ξ∗i }g1

i=1 is a strictly increasing sequence in (a, b),
and χ(s) is the characteristic function on [0,∞), i.e.,

χ(s) =
{

1, s ≥ 0,
0, s < 0,

then BC (1.2) reduces to




(py′)(c) = 0,

δ21y(b) + δ22y
′(b)−

g1∑
i=1

[k1iy(ξ∗i ) + k2iy
′(ξ∗i )] = 0.

A similar comment can be made to BC (1.3).
We assume throughout, and without further mention, that the following conditions

hold:
(H1) p, q, w ∈ C1[a, b] such that p(t) > 0, w(t) > 0, and q′(t) + q∗ ≤ l(q∗ − q(t))

on [a, b] with

q∗ := max
t∈[a,b]

{q(t), 0} and l± := max
t∈[a,b]

{(
p′(t) + q∗

p(t)

)

∓
,
w′±(t)
w(t)

}
,

where h±(t) := max{0,±h(t)} for h : R→ R;
(H2) δij ∈ R for i, j = 1, 2;
Note that examples of the function classes for q that satisfy (H1) are discussed
in Chamberlain and Kong [2, Remark 1].

SLPs have been used to study nonlinear boundary value problems (BVPs) in
recent years. For example, researchers have obtained results on the existence of
positive solutions and nodal solutions (those with a zero counting property in (a, b))
of the BVP consisting of the equation

−y′′ + q(t)y = w(t)f(y), t ∈ (a, b),

and the separated BC
{

cosα y(a)− sinα (py′)(a) = 0, α ∈ [0, π),
cosβ y(b)− sin β (py′)(b) = 0, β ∈ (0, π],

by comparing f0 := limy→0 f(y)/y and f∞ := lim|y|→∞ f(y)/y with the eigenvalues
of a particular SLP, see Erbe [4] for positive solutions, Kong [9], Kong, and Kong [6],
and Naito and Tanaka [17] for nodal solutions.
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Nonlinear BVPs with nonlocal BCs, including multi-point BCs, have also received
a lot of attention in research, and various conditions are obtained for the existence of
positive solutions and nodal solutions. We refer the reader to [1,3, 5, 7, 10,15,16,18,19,
21–23] and the references therein for some recent work on this topic.

The study of linear SLPs involving multi-point BCs has become active recently.
In particular, the spectra of such problems has been a focus in research due to the
fact that the BCs are no longer self-adjoint. Earlier work in this area were given by
Ma, Rynne, and Xu in [15, 16, 18, 19, 21–23] for the problem consisting of the equation
−y′′ = λy and the BC

y(0) = 0, y(1)−
g1∑

i=1
αiy(ξi) = 0,

where ξi ∈ (0, 1). A sequence of real eigenvalues is calculated and is applied to show
the existence of nodal solutions for corresponding nonlinear BVPs.

Genoud and Rynne [5] is the first paper dealing with the multi-point SLPs with
a variable coefficient function, where an implicit condition is imposed to guarantee
the existence of a sequence of real eigenvalues. By a different approach, Kong, Kong,
Kwong, and Wong [8] studied the SLPs consisting of Eq. (1.1) with p(t) ≡ 1 and
q(t) ≡ 0, and one of the following BCs





cosαy(a)− sinα y′(a) = 0, α ∈ [0, π),

y(b)−
g1∑
i=1

kiy(ηi) = 0

and 



y(a)−
g2∑
j=1

hjy(ξj) = 0,

y(b)−
g1∑
i=1

kiy(ηi) = 0,

where ηi, ξj ∈ (a, b). They obtained explicit conditions for the existence of a sequence of
positive eigenvalues and derived zero counts of the corresponding eigenfunctions. They
also revealed interlacing relations between the eigenvalues of the above multi-point
SLPs and certain two-point SLPs.

The results in [8] have recently been successfully extended by Kong and St. George
[11] to the SLPs consisting of the same equation and one of the BCs





cosα y(a)− sinα y′(a) = 0, α ∈ [0, π),

δ21y(b) + δ22y
′(b)−

g1∑
i=1

[k1iy(ηi) + k2iy
′(ηi)] = 0,

and 



δ11y(a) + δ12y
′(a)−

g2∑
j=1

[h1jy(ξj) + h2jy
′(ξj)] = 0,

δ21y(b) + δ22y
′(b)−

g1∑
i=1

[k1iy(ηi) + k2iy
′(ηi)] = 0.
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Motivated by the work in [8] and [11], in this paper, we will study SLPs consisting
of Eq. (1.1) with variable coefficient functions p(t), q(t), and w(t) and one of the
general homogeneous linear Riemann–Stieltjes integral BCs (1.2) and (1.3). We will
establish the existence of a sequence of positive eigenvalues and derive the zero counts
of the corresponding eigenfunctions. We will further reveal the interlacing relations
between such eigenvalues and the eigenvalues for certain two-point BVPs. For the
special case with p(t) ≡ 1 and q(t) ≡ 0, we will establish the existence of one or more
additional eigenvalues whose eigenfunctions have less zero counts.

This paper is structured as follows: the main results are stated in Section 2 and
the proofs of the results are given in Section 3.

2. MAIN RESULTS

To study the existence of eigenvalues and zero counting properties of associated
eigenfunctions of SLPs for Eq. (1.1), we define the following classes of solutions
of Eq. (1.1).
Definition 2.1. Let n ∈ N0 and a ≤ a1 < b1 ≤ b. A solution y of Eq. (1.1) is said to
belong to class Sn[a1, b1] if y has exactly n zeros in (a1, b1).

For c ∈ [a, b] and d ∈ [b, d], let {µ[1]
m (c)}∞m=0 and {µ[2]

n (d)}∞n=0 be the eigenvalues
of the SLPs consisting of Eq. (1.1) and the two point BCs

(py′)(c) = 0, y(b) = 0 (2.1)

and
y(a) = 0, (py′)(d) = 0, (2.2)

respectively. It is well known that

−∞ < µ
[1]
0 (c) < µ

[1]
1 (c) < · · · < µ[1]

m (c) < · · · , and µ[1]
m (c)→∞,

and
−∞ < µ

[2]
0 (d) < µ

[2]
1 (d) < · · · < µ[2]

n (d) < · · · , and µ[2]
n (d)→∞;

and any eigenfunction associated with µ
[1]
i (c) or µ[2]

i (d) has i simple zeros in (a, b)
for i ∈ N0, see [24, Theorem 4.3.2]. Let m0, n0 ∈ N0 such that µ[1]

m0(c) and µ[2]
n0(d) be

the first positive eigenvalues of SLPs (1.1), (2.1) and (1.1), (2.2).
Noting that ξ(s) and ηi(s) are of bounded variation, we see that there exist

nondecreasing functions ξij(s) and ηij(s), i, j = 1, 2 such that

ξi(s) = ξi1(s)− ξi2(s) and ηi(s) = ηi1(s)− ηi2(s), s ∈ [a, b]. (2.3)

To simplify notation, we denote

ξ+
i (s) := ξi1(s) + ξi2(s), and η+

i (s) := ηi1(s) + ηi2(s), s ∈ [a, b],

where ξij(s), ηij(s) for i, j = 1, 2 are given by (2.3).
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The following conditions are stated here in order to shorten the statement of our
results: for c ∈ [a, b) and d ∈ (a, b],

b∫

a

e(b−a)l−/2 dξ+
1 (s)√

p(b)(q∗ − q(s) + µ
[1]
m (c)w(s))

+ e(b−a)l−/2
b∫

a

√
p(s)
p(b) dξ

+
2 (s) < δ22 (2.4)

and
b∫

a

e(b−a)l+/2 dη+
1 (a+ b− s)√

p(a)(q∗ − q(a+ b− s) + µ
[2]
n (d)w(a+ b− s))

+ e(b−a)l+/2
b∫

a

√
p(s)
p(a) dη

+
2 (a+ b− s) < δ12.

(2.5)

The first result is for the existence of eigenvalues and the zero counts of eigenfunc-
tions of SLP (1.1), (1.2).

Theorem 2.2. Assume (2.4) holds for some integer m ≥ m0. Then SLP (1.1),
(1.2) has an infinite number of positive eigenvalues {λi(c)}∞i=m+1 which satisfies the
interlacing relation with {µ[1]

i (c)}∞i=m

µ[1]
m (c) < λm+1(c) < µ

[1]
m+1(c) < λm+2(c) < · · · < µ

[1]
i (c) < λi+1(c) < · · · . (2.6)

Moreover, the eigenfunction yi associated with λi(c) belongs to Si[c, b] for i ≥ m+ 1.

Since limm→∞ µ
[1]
m (c) = ∞, the following result follows immediately from Theo-

rem 2.2.

Corollary 2.3. Assume e(b−a)l−/2 ∫ b
a

√
p(s)
p(b) dξ

+
2 (s) < δ22. Then SLP (1.1), (1.2) has

an infinite number of positive eigenvalues tending towards infinity.

The next result is for the existence of eigenvalues and the zero counts of eigenfunc-
tions of SLP (1.1), (1.3). Here, for r ∈ N0, we denote λDr as the r-th eigenvalue of the
SLP consisting of Eq. (1.1) and the Dirichlet BC y(a) = y(b) = 0.

Theorem 2.4. Assume (2.4) with c = a and (2.5) with d = b hold for some integers
m ≥ m0 and n ≥ n0, respectively. Then SLP (1.1), (1.3) has a sequence of positive
eigenvalues {λr}∞r=m+n+2 which satisfies the interlacing relation with {λDr }∞r=m+n

λDr−2 < λr < λDr for r ≥ m+ n+ 2,

and the eigenfunction yr associated with λr belongs to Sr[a, b] for r ≥ m+ n+ 2.

The following corollary is an immediate consequence of Theorem 2.4 due to the fact
that both limm→∞ µ

[1]
m (a) =∞ and limn→∞ µ

[2]
n (b) =∞.
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Corollary 2.5. Assume that

e(b−a)l−/2
b∫

a

√
p(s)
p(b) dξ

+
2 (s) < δ22 and e(b−a)l+/2

b∫

a

√
p(s)
p(a) dη

+
2 (a+ b− s) < δ12.

Then SLP (1.1), (1.3) has an infinite number of positive eigenvalues tending towards
infinity.

When p(t) ≡ 1 and q(t) ≡ 0, Eq. (1.1) becomes the equation

y′′ + λw(t)y = 0. (2.7)

In this case, apart from the results in Theorems 2.2 and 2.4, we show that SLPs (2.7),
(1.2) and (2.7), (1.3) may have one or more additional positive eigenvalues. Note that
in this case, m0 = n0 = 0 and conditions (2.4) and (2.5) become

b∫

a

e(b−a)l−/2 dξ+
1 (s)√

µ
[1]
m (c)w(s)

+ e(b−a)l−/2
b∫

a

dξ+
2 (s) < δ22 (2.8)

and
b∫

a

e(b−a)l+/2 dη+
1 (a+ b− s)√

µ
[2]
n (d)w(a+ b− s)

+ e(b−a)l+/2
b∫

a

dη+
2 (a+ b− s) < δ12, (2.9)

where l± are given by (H1) with p(t) ≡ 1 and q(t) ≡ 0. The following conditions are
also stated here to simplify the statements of the results.

b∫

a

dξ+
1 (s) < δ21, (2.10)

b∫

a

dη+
1 (a+ b− s) < δ11, (2.11)



√
µ

[2]
n+1(b)

b∫

a

dξ+
2 (s) +

b∫

a

dξ+
1 (s)√
w(s)


 e(b−a)l−/2 <

δ21√
w(b)

, (2.12)



√
µ

[1]
m+1(a)

b∫

a

dη+
2 (s) +

b∫

a

dη+
1 (a+ b− s)√
w(a+ b− s)


 e(b−a)l+/2 <

δ11√
w(a)

. (2.13)

Theorem 2.6. Assume (2.8) holds for some even integer m ≥ 0 and (2.10) holds.
Then in addition to the conclusion in Theorem 2.2, SLP (2.7), (1.2) also has a positive
eigenvalue λm(c) which satisfies that λm(c) < µ

[1]
m (c). Moreover, the eigenfunction ym

associated with λm(c) belongs to Si[c, b] for some 0 ≤ i ≤ m.
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The following corollary follows directly from Theorem 2.6.

Corollary 2.7. Assume (2.8) holds for m = 0 and (2.10) holds. Then SLP (2.7), (1.2)
has an infinite number of positive eigenvalues {λi(c)}∞i=0 which satisfies the interlacing
relation with {µ[1]

i (c)}∞i=0

λ0(c) < µ
[1]
0 (c) < λ1(c) < µ

[1]
1 (c) < λ2(c) < · · · < µ

[1]
i (c) < λi+1(c) < · · · .

Moreover, the eigenfunction yi associated with λi belongs to Si[c, b] for i ∈ N.

Theorem 2.8.

(a) Assume (2.8) with c = a holds for some even integer m ≥ 0, (2.9) with d = b
and (2.12) hold for some integer n ≥ 0, and (2.10) holds. Then in addition to the
conclusion in Theorem 2.4, SLP (2.7), (1.3) also has a positive eigenvalue λm+n+1
which satisfies that λm+n+1 < λDm+n+1. Moreover, the eigenfunction ym+n+1
associated with λm+n+1 belongs to Sr[a, b] for some n+ 1 ≤ r ≤ m+ n+ 1.

(b) Assume (2.9) with d = b holds for some even integer n ≥ 0, (2.8) with c = a and
(2.13) hold for some integer m ≥ 0, and (2.11) holds. Then in addition to the
conclusion in Theorem 2.4, SLP (2.7), (1.3) also has a positive eigenvalue λm+n+1
which satisfies that λm+n+1 < λDm+n+1. Moreover, the eigenfunction ym+n+1
associated with λm+n+1 belongs to Sr[a, b] for some m+ 1 ≤ r ≤ m+ n+ 1.

(c) Assume that (2.8) with c = a, (2.9) with d = b, (2.12), (2.13) hold for some even
integers m,n ≥ 0, and (2.10) and (2.11) hold. Then in addition to the conclusions
to Parts (a) and (b) above, SLP (2.7), (1.3) also has a positive eigenvalue λm+n
which satisfies that λm+n < λDm+n. Moreover, the eigenfunction ym+n associated
with λm+n belongs to Sr[a, b] for some 0 ≤ r ≤ m+ n.

The following corollary follows directly from Theorem 2.8.

Corollary 2.9. Assume (2.8) with c = a, (2.9) with d = b, (2.12), (2.13) hold for
m = n = 0, and (2.10) and (2.11) hold. Then SLP (2.7), (1.3) has a sequence of
positive eigenvalues {λr}∞r=0 which satisfy the interlacing relation with {λDr }∞r=0

λDr−2 < λr < λDr for r ≥ 2

and
λ0 < λD0 and λ1 < λD1 ,

and the eigenfunction yr associated with λr belongs to Sr[a, b] for r ≥ 0.

3. PROOFS OF MAIN RESULTS

Proof of Theorem 2.2. Let y(t, λ) be the solution of Eq. (1.1) on [c, b] such that

y(c) = 1 and (py′)(c) = 0. (3.1)
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Let θ(t, λ) be the Prüfer angle of y(t, λ), i.e., θ(t, λ) is a continuous function on [c, b]
such that

tan θ(t, λ) = y(t, λ)/(py′)(t, λ) and θ(c, λ) = π/2.
It is well known, see [24, Theorem 4.5.3], that for t ∈ (c, b], θ(t, λ) is strictly increasing
in λ and

lim
λ→−∞

θ(t, λ) = 0 and θ(t, λ) =∞.

For ease of notation, let µ[1]
i := µ

[1]
i (c), the i-th eigenvalue of SLP (1.1) (1.2). Thus

for µ[1]
i < λ < µ

[1]
i+1, with i ≥ m, we have

(i+ 1)π = θ(b, µ[1]
i ) < θ(b, λ) < θ(b, µ[1]

i+1) = (i+ 2)π. (3.2)

For all t ∈ [c, b] and λ ≥ µ[1]
m ≥ µ[1]

m0 > 0, define an energy function for y(t, λ) by

E(t, λ) = 1
2p(t) [p(t)y′(t, λ)]2 + 1

2 (q∗ − q(t) + λw(t)) [y(t, λ)]2. (3.3)

By (H1), E(t, λ) > 0 for all t ∈ [a, b]. For ease of notation in the following, let p := p(t),
q := q(t), w := w(t), and y := y(t, λ). It follows from Eq. (1.1) and (H1) that

E′(t, λ) = − p′

2p2 [py′]2 − 1
2q
′y2 + q∗yy′ + 1

2λw
′y2

≥ − p′

2p2 [py′]2 − 1
2q
′y2 − 1

2q
∗[y2 + (y′)2] + 1

2λw
′y2

= − (p′ + q∗)
2p2 [py′]2 − 1

2 [q′ + q∗]y2 + 1
2λw

′y2

≥ − l
−

2p [py′]2 − l−

2 [q∗ − q]y2 − l−

2 λwy
2

= −l−E(t, λ).

From this, we have E′(t, λ)+ l−E(t, λ) ≥ 0 for all t ∈ [a, b]. It follows that for s ∈ [a, b],

ln E(b, λ)
E(s, λ) =

b∫

s

E′(t, λ)
E(t, λ) dt ≥ −

b∫

a

l− dt = −l−(b− a).

Thus
E(s, λ) ≤ el−(b−a)E(b, λ), s ∈ [a, b]. (3.4)

For λ = µ
[1]
i and λ = µ

[1]
i+1 with i ≥ m, we have for s ∈ [a, b]

E(s, λ) ≥ 1
2 [q∗ − q(s) + λw(s)][y(s, λ)]2 (3.5)

and
E(s, λ) ≥ 1

2p(s) [p(s)y′(s, λ)]2
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along with
E(b, λ) = 1

2p(b) [p(b)y′(b, λ)]2;

and therefore for s ∈ [a, b] we have

|y(s, λ)| ≤
√

2E(s, λ)
q∗ − q(s) + λw(s) and |y(b, λ)| = 0, (3.6)

along with

|p(s)y′(s, λ)| ≤
√

2p(s)E(s, λ) and |p(b)y′(b, λ)| =
√

2p(b)E(b, λ). (3.7)

Define

Γ(λ) = δ21y(b, λ) + δ22(py′)(b, λ)−
b∫

a

[y(s, λ) dξ1(s) + (py′)(s, λ) dξ2(s)].

Let i ≥ m such that i = 2k for some k ∈ N0. Note that y(b, µ[1]
2k) = y(b, µ[1]

2k+1) = 0,
y′(b, µ[1]

2k) < 0, and y′(b, µ[1]
2k+1) > 0. Also, (2.4) implies that δ22 > 0. Then by (3.6),

(3.7), (3.4), and (2.4), we have

Γ(µ[1]
2k) = δ22(py′)(b, µ[1]

2k)−
b∫

a

y(s, µ[1]
2k) dξ1(s)−

b∫

a

(py′)(s, µ[1]
2k) dξ2(s)

≤ −δ22|p(b)y′(b, µ[1]
2k)|+

b∫

a

|y(s, µ[1]
2k)| dξ+

1 (s) +
b∫

a

|p(s)y′(s, µ[1]
2k)| dξ+

2 (s)

≤ −δ22

√
2p(b)E(b, µ[1]

2k) +
b∫

a

√√√√ 2E(s, µ[1]
2k)

q∗ − q(s) + µ
[1]
2kw(s)

dξ+
1 (s)

+
b∫

a

√
2p(s)E(s, µ[1]

2k) dξ+
2 (s)

≤
√

2p(b)E(b, µ[1]
2k)
(
− δ22 +

b∫

a

e(b−a)l−/2dξ+
1 (s)√

p(b)(q∗ − q(s) + µ
[1]
2kw(s))

+
b∫

a

e(b−a)l−/2

√
p(s)
p(b) dξ

+
2 (s)

)
< 0.

In the same way we can show that Γ(µ2k+1) > 0. By the continuity of Γ(λ), there exists
λ2k+1 ∈ (µ[1]

2k, µ
[1]
2k+1) such that Γ(λ2k+1) = 0. Similarly, if i ≥ m such that i = 2k + 1
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for some k ∈ N0, there exists λ2k+2 ∈ (µ[1]
2k+1, µ

[1]
2k+2) such that Γ(λ2k+2) = 0. For both

cases, λi+1 is an eigenvalue of SLP (1.1), (1.2) and y(t, λi+1) is a corresponding
eigenfunction. Moreover, from (3.2),

(i+ 1)π < θ(b, λi+1) < (i+ 2)π.

Then (2.6) follows from the monotone property of θ(t, λ) with respect to λ. We observe
that

θ′(t, λ) = 1
p(t) cos2 θ(t, λ) + (λw(t)− q(t)) sin2 θ(t, λ).

Hence θ(t, λ) is strictly increasing at points where θ(t, λ) = 0 (mod π). Note that
y(t) = 0 if an only if θ(t, λ) = 0 (mod π). Hence, y has exactly i+ 1 zeros on (c, b),
and so y(t, λi+1) ∈ Si+1[c, b] for i ≥ m. �

To prove Theorem 2.4, we state a counterpart to Theorem 2.2 for the SLP consisting
of Eq. (1.1) and the Riemann–Stieltjes BC




δ11y(a) + δ12(py′)(a)−

b∫
a

[y(s) dη1(s) + (py′)(s) dη2(s)] = 0,

(py′)(d) = 0.
(3.8)

Lemma 3.1. Assume for some integer n ≥ n0, (2.5) holds. Then SLP (1.1), (3.8) has
an infinite number of positive eigenvalues {λj(d)}∞j=n+1 which satisfy the interlacing
relation with {µ[2]

j (d)}∞j=n

µ[2]
n (d) < λn+1(d) < µ

[2]
n+1(d) < λn+2(d) < · · · < µ

[2]
j (d) < λj+1(d) < · · · .

Moreover, the eigenfunction yj associated with λj(d) belongs to Sj [a, d] for j ≥ n+ 1.

Proof. This follows immediately from Theorem 2.2 after applying the linear transfor-
mation t = a+ b− s with d = a+ b− c.

Proof of Theorem 2.4. For any r ≥ m0 + n0 + 2, choose i ≥ m0 and j ≥ n0 such that
r = i+j+2. For any c ∈ [a, b) and d ∈ (a, b], denote by µ[1]

i (c) the i-th eigenvalue of SLP
(1.1), (2.1) and µ[2]

j (d) the j-th eigenvalue of SLP (1.1), (2.2). Following [8, Remark
3.3], we can show that {λ[1]

i (c) : c ∈ [a, b)} and {λ[2]
j (d) : d ∈ (a, b]} form continuous

eigenvalue branches of SLP (1.1), (3.8). Then µ[1]
i (a) > 0 and µ[2]

j (b) > 0. It is known,
see [12, Theorem 4.1] and [14, Theorems 2.2 and 2.3], that µ[1]

i (c) is strictly increasing
and limc→b− µ

[1]
i (c) =∞; and µ[2]

j (d) is strictly decreasing and limd→a+ µ
[2]
j (d) =∞.

Thus, µ[1]
i (c), µ[2]

j (d) > 0 for c, d ∈ (a, b).
By Theorem 2.2 and Lemma 3.1, we have

λ
[1]
i+1(c) > µ

[1]
i (c) and λ[2]

j+1(d) > µ
[2]
j (d) for all c, d ∈ (a, b).
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It follows that λ[1]
i+1(c) > 0 and λ[2]

j+1(d) > 0 for all c, d∈(a, b), and limc→b− λ
[1]
i+1(c)=∞

and limd→a+ λ
[2]
j+1(d) = ∞. By the continuity of λ[1]

i+1(c) and λ
[2]
j+1(d), there exists

c∗ = d∗ ∈ (a, b) such that λ[1]
i+1(c∗) = λ

[2]
j+1(d∗). Let

λr = λ
[1]
i+1(c∗) = λ

[2]
j+1(d∗). (3.9)

Thus, any eigenfunction of SLP (1.1), (1.2) associated with λ[1]
i+1(c∗) is an eigenfunction

of SLP (1.1), (3.8) associated with λ[2]
j+1(d∗), and vice versa. We denote the common

eigenfunction of the two problems on [a, b] as yr. By Theorem 2.2 and Lemma 3.1,
we have yr ∈ Si+1[c∗, b] ∩ Sj+1[a, d∗], i.e., yr ∈ Sr[a, b] since r = i+ j + 2.

By an argument similar to above, we see that there exists c∗∗ = d∗∗ ∈ (a, b)
such that µ[1]

i (c∗∗) = µ
[2]
j (d∗∗). This, along with the fact that c∗ = d∗, the monotone

properties of µ[1]
i (c) and µ[2]

j (d), and Theorem 2.2 and Lemma 3.1, shows that

(i) when c∗∗ ≤ c∗, µ[1]
i (c∗∗) ≤ µ[1]

i (c∗) < λ
[1]
i+1(c∗);

(ii) when d∗∗ ≥ d∗, µ[2]
j (d∗∗) ≤ µ[2]

j (d∗) < λ
[2]
j+1(d∗).

Recall that λDr is the r-th eigenvalue of the SLP consisting of Eq. (1.1) and the
Dirichlet BC y(a) = y(b) = 0. Using the fact that r − 2 = i + j and counting
the zeros of the eigenfunctions on the intervals (c∗∗, b), (a, d∗∗), and (a, b), we see that
λDr−2 = µ

[1]
i (c∗∗) = µ

[2]
j (d∗∗) with the same eigenfunction. This together with (3.9)

shows that λDr−2 < λr.
With the same reasoning, we can find c∗∗∗ = d∗∗∗ ∈ (a, b) such that µ[1]

i+1(c∗∗∗) =
µ

[2]
j+1(d∗∗∗). Similar to above,

(i) when c∗ ≤ c∗∗∗, λ[1]
i+1(c∗) < µ

[1]
i+1(c∗) ≤ µ[1]

i+1(c∗∗∗);
(ii) when d∗ ≥ d∗∗∗, λ[2]

j+1(d∗) < µ
[2]
j+1(d∗) ≤ µ[2]

j+1(d∗∗∗).

Since r = i + j + 2, we have λDr = µ
[1]
i+1(c∗∗∗) = µ

[2]
j+1(d∗∗∗). By (3.9), we see that

λr < λDr .

Proof of Theorem 2.6. We need only show that under the assumptions, SLP (2.7),
(1.2) has an additional eigenvalue λm(c) associated with eigenfunction ym ∈ Si[c, b],
for some 0 ≤ i ≤ m, which satisfies 0 < λm(c) < µ

[1]
m (c).

From (3.1), we have that y(t, λ) is a solution of Eq. (2.7) satisfying y(c, λ) = 1 and
y′(c, λ) = 0. Since µ[1]

m (c) > 0, then for 0 < λ < µ
[1]
m (c) we have

0 < θ(b, λ) < θ(b, µ[1]
m (c)) = (m+ 1)π. (3.10)

For p(t) ≡ 1 and q(t) ≡ 0, define an energy function for y(t, λ) as in (3.3). Then (3.4),
(3.6), and (3.7) hold for λ = µ

[1]
m (c). Since m is even implies that y′(b, µ[1]

m (c)) < 0,
then by a similar process as in the proof of Theorem 2.2, we arrive at Γ(µ[1]

m (c)) < 0.



568 Qingkai Kong and Thomas E. St. George

For λ = 0, we have y(t, 0) ≡ 1 and y′(t, 0) ≡ 0 for all t ∈ [a, b]. By the continuous
dependence of solutions on parameters, it follows that y′(t, λ) = o(1) uniformly for all
t ∈ [a, b] as λ→ 0. Since

y(t, λ) = y(c, λ) +
t∫

c

y′(s, λ) ds,

then for sufficiently small λ, we have

y(t, λ) = 1 + o(1) > 1/2 for all t ∈ [a, b].

Then from (2.11), we have for λ sufficiently small

Γ(λ) = y(b, λ)


δ21 + δ22

y′(b, λ)
y(b, λ) −

b∫

a

[
y(s, λ)
y(b, λ) dξ1(s) + y′(s, λ)

y(b, λ) dξ2(s)
]


≥ y(b, λ)


δ21 + o(1)−

b∫

a

[
(1 + o(1)) dξ+

1 (s) + o(1) dξ+
2 (s)

]



= y(b, λ)


δ21 −

b∫

a

dξ+
1 (s)


+ o(1) > 0.

By the continuity of Γ(λ), there exists λm(c) ∈ (0, µ[1]
m (c)) such that Γ(λm(c)) = 0.

Thus, λm(c) is an eigenvalue of SLP (1.1), (1.2) and y(t, λm(c)) is the corresponding
eigenfunction. Moreover, from (3.10) and the monotone property of θ(t, λ) with respect
to λ, we have y(t, λm(c)) ∈ Si[c, b] for 0 ≤ i ≤ m.

The following lemma is a counterpart to Theorem 2.6.

Lemma 3.2. Assume (2.9) holds for some even integer n ≥ 0 and (2.11) holds.
Then addition to the conclusion of Lemma 3.1, SLP (2.7), (3.8) also has a positive
eigenvalue λn(d) which satisfies that λn(d) < µ

[2]
n (d). Moreover, the eigenfunction

associated with λn(d) belongs to Si[a, d] for some 0 ≤ i ≤ n.

Proof. By applying the linear transformation stated in the proof of Lemma 3.1 to
Theorem 2.6, this result obtained. It is therefore omitted.

Proof of Theorem 2.8. (a) Let {λ[1]
m (c) : c ∈ [a, b)} be the m-th continuous eigenvalue

branch for SLP (2.7), (1.2) given in the proof of Theorem 2.6 above. Unlike the case
in Theorem 2.4, we do not expect limc→b− λ

[1]
m (c) =∞. Instead, we claim that with

the condition (2.13)
lim sup
c→b−

λ[1]
m (c) ≥ µ[2]

n+1(b) > λ
[2]
n+1(b). (3.11)
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For otherwise, lim supc→b− λ
[1]
m (c) < µ

[2]
n+1(b). Hence, there exists a sequence

{ck}∞k=0 ⊂ [a, b) such that ck → b and

lim
k→∞

λ[1]
m (ck) = λ̄ < µ

[2]
n+1(b).

Let y[1]
k (t) be the eigenfunction associated with λ[1]

m (ck) such that y[1]
k (ck) = 1. Then

y
[1]
k (t) satisfies Eq. (2.7) with λ = λ

[1]
m (ck) and BC (1.2). Obviously, (y[1]

k )′(ck) = 0.
Let ȳ(t) be the solution of Eq. (1.1) with λ = λ̄ satisfying that ȳ(b) = 1 and ȳ′(b) = 0.
By the continuous dependence of solutions of initial value problems on the initial
conditions and parameters, we see that limk→∞ y

[1]
k (t) = ȳ(t) uniformly on [a, b]. This

shows that ȳ(t) satisfies BC (1.2) and hence is an eigenfunction of SLP (2.7), (1.2)
with λ = λ̄. Define an energy function for ȳ(t) by (3.3) with p(t) ≡ 1 and q(t) ≡ 0.
Then

E(b, λ̄) = λ̄

2w(b)[ȳ(b, λ̄)]2

and (3.4) and (3.5) hold for y and λ replaced with ȳ and λ̄. As a result, we have

E(b, λ̄) = 1
2 λ̄w(b),

|ȳ(s, λ̄)| ≤
√

2E(s, λ̄)
λ̄w(s)

and |ȳ(b, λ̄)| = 1, s ∈ [a, b]

and
|ȳ′(s, λ̄)| ≤

√
2E(s, λ̄) and |ȳ′(b, λ̄)| = 0, s ∈ [a, b].

Thus

Γ(λ̄) ≥ δ21 −
b∫

a

(
|ȳ(s, λ̄)| dξ+

1 (s) + |ȳ′(s, λ̄)| dξ+
2 (s)

)

≥ δ21 −
b∫

a

(√
2E(s, λ̄)
λ̄w(s)

dξ+
1 (s) +

√
2E(s, λ̄) dξ+

2 (s)
)

≥ δ21 −

√
2E(b, λ̄)

λ̄

b∫

a

(
e(b−a)l−/2
√
w(s)

dξ+
1 (s) + e(b−a)l−/2

√
λ̄ dξ+

2 (s)
)

≥

√
2E(b, λ̄)

λ̄


 δ21√

w(b)
− e(b−a)l−/2




b∫

a

dξ+
1 (s)√
w(s)

+
√
µ

[2]
n+1(b)

b∫

a

dξ+
2 (s)




 > 0.

This contradicts the fact that λ̄ is an eigenvalue of SLP (2.7), (1.2) with associated
eigenfunction ȳ and hence proves the relationship in (3.11) holds.
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From (3.11) and the fact that limd→b+ λ
[2]
n+1(d) =∞, by the continuity of λ[1]

m (c)
and λ[2]

n+1(d), there exist c∗ = d∗ ∈ (a, b) such that λ[1]
m (c∗) = λ

[2]
n+1(d∗). By Lemma 3.1

and Theorem 2.6, the eigenfunctions associated with λ[1]
m (c∗) and λ[2]

n+1(d∗) belong to
Si[c∗, b] ∩ Sn+1[a, d∗] for some 0 ≤ i ≤ m. Then the rest of the proof is essentially the
same as the proof of Theorem 2.4 and is omitted.

(b) The proof is essentially the same as that in part (a) above but uses Theorem 2.4
and Lemma 3.2 instead of Theorem 2.4 and Theorem 2.6. It is therefore omitted.

(c) This can be proved similarly as part (a) above with λ[2]
n+1(d) replaced by λ[2]

n (d)
and λ[1]

m (c) replaced by λ[1]
m+1(c). We omit the detail.
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